Narrow your search

Library

ULiège (7)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

VIVES (2)

UAntwerpen (1)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2023 (1)

2021 (1)

2020 (1)

2018 (2)

2016 (1)

More...
Listing 1 - 9 of 9
Sort by

Book
Table of binomial coefficients
Author:
Year: 1954 Publisher: Cambridge : Published for the Royal Society at the University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Bernoulli's fallacy : statistical illogic and the crisis of modern science
Author:
ISBN: 0231553358 Year: 2021 Publisher: New York : Columbia University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"There is a logical flaw in the statistical methods used across experimental science. This fault is not just a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly data-reliant culture, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and our ability to make inferences from data. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. He recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. Clayton highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics. Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach-incorporating prior knowledge when reasoning with incomplete information-in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli's Fallacy explains why something has gone wrong with how we use data-and how to fix it"--


Book
The enjoyment of math
Authors: --- ---
ISBN: 0691241538 Year: 2023 Publisher: Princeton, New Jersey ; Oxford : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The classic book that shares the enjoyment of mathematics with readers of all skill levelsWhat is so special about the number 30? Do the prime numbers go on forever? Are there more whole numbers than even numbers? The Enjoyment of Math explores these and other captivating problems and puzzles, introducing readers to some of the most fundamental ideas in mathematics. Written by two eminent mathematicians and requiring only a background in plane geometry and elementary algebra, this delightful book covers topics such as the theory of sets, the four-color problem, regular polyhedrons, Euler’s proof of the infinitude of prime numbers, and curves of constant breadth. Along the way, it discusses the history behind the problems, carefully explaining how each has arisen and, in some cases, how to resolve it. With an incisive foreword by Alex Kontorovich, this Princeton Science Library edition shares the enjoyment of math with a new generation of readers.

Keywords

Mathematics --- Mathematical recreations. --- Mathematical puzzles --- Number games --- Recreational mathematics --- Recreations, Mathematical --- Puzzles --- Scientific recreations --- Games in mathematics education --- Magic squares --- Magic tricks in mathematics education --- Arbitrarily large. --- Arithmetic. --- Big O notation. --- Binomial theorem. --- Bonse's inequality. --- Circumference. --- Coefficient. --- Combination. --- Complete theory. --- Computation. --- Coprime integers. --- Diameter. --- Divisor. --- Equilateral triangle. --- Euler's formula. --- Euler's theorem. --- Exterior (topology). --- Factorial. --- Factorization. --- Fermat's Last Theorem. --- Fermat's theorem. --- Fourth power. --- Fractional part. --- Geometric mean. --- Geometric series. --- Geometry. --- Hypotenuse. --- Integer factorization. --- Intersection (set theory). --- Irrational number. --- Line segment. --- Logarithm. --- Long division. --- Mathematical induction. --- Mathematics. --- Metric space. --- Natural number. --- Non-Euclidean geometry. --- Number theory. --- Parallelogram. --- Parity (mathematics). --- Pedal triangle. --- Perfect number. --- Polyhedron. --- Power of 10. --- Prime factor. --- Prime number theorem. --- Prime number. --- Prime power. --- Pure mathematics. --- Pythagorean theorem. --- Rational number. --- Rectangle. --- Regular polygon. --- Regular polyhedron. --- Remainder. --- Reuleaux triangle. --- Rhomboid. --- Rhombus. --- Right angle. --- Right triangle. --- Scientific notation. --- Sign (mathematics). --- Special case. --- Straightedge. --- Summation. --- Theorem. --- Transfinite number. --- Variable (mathematics). --- Waring's problem.

Mathematical methods of statistics
Author:
ISBN: 0691005478 0691080046 1400883865 9780691080048 9780691005478 Year: 1971 Volume: 9 Publisher: Princeton (N.J.): Princeton university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this classic of statistical mathematical theory, Harald Cramér joins the two major lines of development in the field: while British and American statisticians were developing the science of statistical inference, French and Russian probabilitists transformed the classical calculus of probability into a rigorous and pure mathematical theory. The result of Cramér's work is a masterly exposition of the mathematical methods of modern statistics that set the standard that others have since sought to follow. For anyone with a working knowledge of undergraduate mathematics the book is self contained. The first part is an introduction to the fundamental concept of a distribution and of integration with respect to a distribution. The second part contains the general theory of random variables and probability distributions while the third is devoted to the theory of sampling, statistical estimation, and tests of significance.

Keywords

Mathematical statistics --- 519.2 --- 519.2 Probability. Mathematical statistics --- Probability. Mathematical statistics --- Mathematics --- Statistical inference --- Statistics, Mathematical --- Statistics --- Probabilities --- Sampling (Statistics) --- Statistical methods --- Statistique mathématique --- Mathematical statistics. --- Statistique mathématique --- Statistique mathématique. --- Distribution (théorie des probabilités) --- Distribution (Probability theory) --- A priori probability. --- Addition theorem. --- Additive function. --- Analysis of covariance. --- Arithmetic mean. --- Axiom. --- Bayes' theorem. --- Bias of an estimator. --- Binomial distribution. --- Binomial theorem. --- Bolzano–Weierstrass theorem. --- Borel set. --- Bounded set (topological vector space). --- Calculation. --- Cartesian product. --- Central moment. --- Characteristic function (probability theory). --- Characteristic polynomial. --- Coefficient. --- Commutative property. --- Confidence interval. --- Convergence of random variables. --- Correlation coefficient. --- Degeneracy (mathematics). --- Degrees of freedom (statistics). --- Diagram (category theory). --- Dimension. --- Distribution (mathematics). --- Distribution function. --- Empirical distribution function. --- Equation. --- Estimation theory. --- Estimation. --- Identity matrix. --- Independence (probability theory). --- Interval (mathematics). --- Inverse probability. --- Invertible matrix. --- Joint probability distribution. --- Laplace distribution. --- Lebesgue integration. --- Lebesgue measure. --- Lebesgue–Stieltjes integration. --- Likelihood function. --- Limit (mathematics). --- Linear regression. --- Logarithm. --- Logarithmic derivative. --- Logarithmic scale. --- Marginal distribution. --- Mathematical analysis. --- Mathematical induction. --- Mathematical theory. --- Mathematics. --- Matrix (mathematics). --- Maxima and minima. --- Measure (mathematics). --- Method of moments (statistics). --- Metric space. --- Minor (linear algebra). --- Moment (mathematics). --- Moment matrix. --- Normal distribution. --- Numerical analysis. --- Parameter. --- Parity (mathematics). --- Poisson distribution. --- Probability distribution. --- Probability theory. --- Probability. --- Proportionality (mathematics). --- Quantity. --- Random variable. --- Realization (probability). --- Riemann integral. --- Sample space. --- Sampling (statistics). --- Scientific notation. --- Series (mathematics). --- Set (mathematics). --- Set function. --- Sign (mathematics). --- Standard deviation. --- Statistic. --- Statistical Science. --- Statistical hypothesis testing. --- Statistical inference. --- Statistical regularity. --- Statistical theory. --- Subset. --- Summation. --- Theorem. --- Theory. --- Transfinite number. --- Uniform distribution (discrete). --- Variable (mathematics). --- Variance. --- Weighted arithmetic mean. --- Z-test. --- Distribution (théorie des probabilités)

Positive definite matrices.
Author:
ISBN: 1282129740 9786612129742 1400827787 9781400827787 9781282129740 0691129185 9780691129181 6612129743 Year: 2007 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and computational uses across a broad spectrum of disciplines, including calculus, electrical engineering, statistics, physics, numerical analysis, quantum information theory, and geometry. Through detailed explanations and an authoritative and inspiring writing style, Rajendra Bhatia carefully develops general techniques that have wide applications in the study of such matrices. Bhatia introduces several key topics in functional analysis, operator theory, harmonic analysis, and differential geometry--all built around the central theme of positive definite matrices. He discusses positive and completely positive linear maps, and presents major theorems with simple and direct proofs. He examines matrix means and their applications, and shows how to use positive definite functions to derive operator inequalities that he and others proved in recent years. He guides the reader through the differential geometry of the manifold of positive definite matrices, and explains recent work on the geometric mean of several matrices. Positive Definite Matrices is an informative and useful reference book for mathematicians and other researchers and practitioners. The numerous exercises and notes at the end of each chapter also make it the ideal textbook for graduate-level courses.

Keywords

Matrices. --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Matrices --- 512.64 --- 512.64 Linear and multilinear algebra. Matrix theory --- Linear and multilinear algebra. Matrix theory --- Addition. --- Analytic continuation. --- Arithmetic mean. --- Banach space. --- Binomial theorem. --- Block matrix. --- Bochner's theorem. --- Calculation. --- Cauchy matrix. --- Cauchy–Schwarz inequality. --- Characteristic polynomial. --- Coefficient. --- Commutative property. --- Compact space. --- Completely positive map. --- Complex number. --- Computation. --- Continuous function. --- Convex combination. --- Convex function. --- Convex set. --- Corollary. --- Density matrix. --- Diagonal matrix. --- Differential geometry. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence relation. --- Existential quantification. --- Extreme point. --- Fourier transform. --- Functional analysis. --- Fundamental theorem. --- G. H. Hardy. --- Gamma function. --- Geometric mean. --- Geometry. --- Hadamard product (matrices). --- Hahn–Banach theorem. --- Harmonic analysis. --- Hermitian matrix. --- Hilbert space. --- Hyperbolic function. --- Infimum and supremum. --- Infinite divisibility (probability). --- Invertible matrix. --- Lecture. --- Linear algebra. --- Linear map. --- Logarithm. --- Logarithmic mean. --- Mathematics. --- Matrix (mathematics). --- Matrix analysis. --- Matrix unit. --- Metric space. --- Monotonic function. --- Natural number. --- Open set. --- Operator algebra. --- Operator system. --- Orthonormal basis. --- Partial trace. --- Positive definiteness. --- Positive element. --- Positive map. --- Positive semidefinite. --- Positive-definite function. --- Positive-definite matrix. --- Probability measure. --- Probability. --- Projection (linear algebra). --- Quantity. --- Quantum computing. --- Quantum information. --- Quantum statistical mechanics. --- Real number. --- Riccati equation. --- Riemannian geometry. --- Riemannian manifold. --- Riesz representation theorem. --- Right half-plane. --- Schur complement. --- Schur's theorem. --- Scientific notation. --- Self-adjoint operator. --- Sign (mathematics). --- Special case. --- Spectral theorem. --- Square root. --- Standard basis. --- Summation. --- Tensor product. --- Theorem. --- Toeplitz matrix. --- Unit vector. --- Unitary matrix. --- Unitary operator. --- Upper half-plane. --- Variable (mathematics).


Book
Summing it up : from one plus one to modern number theory
Authors: ---
ISBN: 140088053X Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

We use addition on a daily basis-yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research.Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series-long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+. . .=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms-the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem.Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.

Keywords

Number theory. --- Mathematics --- Number study --- Numbers, Theory of --- Algebra --- Absolute value. --- Addition. --- Analytic continuation. --- Analytic function. --- Automorphic form. --- Axiom. --- Bernoulli number. --- Big O notation. --- Binomial coefficient. --- Binomial theorem. --- Book. --- Calculation. --- Chain rule. --- Coefficient. --- Complex analysis. --- Complex number. --- Complex plane. --- Computation. --- Congruence subgroup. --- Conjecture. --- Constant function. --- Constant term. --- Convergent series. --- Coprime integers. --- Counting. --- Cusp form. --- Determinant. --- Diagram (category theory). --- Dirichlet series. --- Division by zero. --- Divisor. --- Elementary proof. --- Elliptic curve. --- Equation. --- Euclidean geometry. --- Existential quantification. --- Exponential function. --- Factorization. --- Fourier series. --- Function composition. --- Fundamental domain. --- Gaussian integer. --- Generating function. --- Geometric series. --- Geometry. --- Group theory. --- Hecke operator. --- Hexagonal number. --- Hyperbolic geometry. --- Integer factorization. --- Integer. --- Line segment. --- Linear combination. --- Logarithm. --- Mathematical induction. --- Mathematician. --- Mathematics. --- Matrix group. --- Modular form. --- Modular group. --- Natural number. --- Non-Euclidean geometry. --- Parity (mathematics). --- Pentagonal number. --- Periodic function. --- Polynomial. --- Power series. --- Prime factor. --- Prime number theorem. --- Prime number. --- Pythagorean theorem. --- Quadratic residue. --- Quantity. --- Radius of convergence. --- Rational number. --- Real number. --- Remainder. --- Riemann surface. --- Root of unity. --- Scientific notation. --- Semicircle. --- Series (mathematics). --- Sign (mathematics). --- Square number. --- Square root. --- Subgroup. --- Subset. --- Sum of squares. --- Summation. --- Taylor series. --- Theorem. --- Theory. --- Transfinite number. --- Triangular number. --- Two-dimensional space. --- Unique factorization domain. --- Upper half-plane. --- Variable (mathematics). --- Vector space.


Book
How to fall slower than gravity : and other everyday (and not so everyday) uses of mathematics and physical reasoning
Author:
ISBN: 0691185026 Year: 2018 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

An engaging collection of intriguing problems that shows you how to think like a mathematical physicistPaul Nahin is a master at explaining odd phenomena through straightforward mathematics. In this collection of twenty-six intriguing problems, he explores how mathematical physicists think. Always entertaining, the problems range from ancient catapult conundrums to the puzzling physics of a very peculiar kind of glass called NASTYGLASS-and from dodging trucks to why raindrops fall slower than the rate of gravity. The questions raised may seem impossible to answer at first and may require an unexpected twist in reasoning, but sometimes their solutions are surprisingly simple. Nahin's goal, however, is always to guide readers-who will need only to have studied advanced high school math and physics-in expanding their mathematical thinking to make sense of the curiosities of the physical world.The problems are in the first part of the book and the solutions are in the second, so that readers may challenge themselves to solve the questions on their own before looking at the explanations. The problems show how mathematics-including algebra, trigonometry, geometry, and calculus-can be united with physical laws to solve both real and theoretical problems. Historical anecdotes woven throughout the book bring alive the circumstances and people involved in some amazing discoveries and achievements.More than a puzzle book, this work will immerse you in the delights of scientific history while honing your math skills.

Keywords

Mathematics --- Almost surely. --- Ambiguity. --- Antiderivative. --- Approximation error. --- Arthur C. Clarke. --- Binomial coefficient. --- Binomial theorem. --- Birthday problem. --- Calculation. --- Cauchy–Schwarz inequality. --- Center of mass (relativistic). --- Centrifugal force. --- Closed-form expression. --- Coefficient. --- Combination. --- Computational problem. --- Conjecture. --- Continued fraction. --- Contradiction. --- Coprime integers. --- Counterexample. --- Crossover distortion. --- Cubic function. --- Derivative. --- Detonation. --- Diameter. --- Dimensional analysis. --- Dirac delta function. --- Disquisitiones Arithmeticae. --- Dissipation. --- Energy level. --- Enola Gay. --- Equation. --- Error. --- Expected value. --- Fermat's Last Theorem. --- Fictitious force. --- G. H. Hardy. --- Geometry. --- Googol. --- Gravitational constant. --- Gravity. --- Grayscale. --- Harmonic series (mathematics). --- Hypotenuse. --- Instant. --- Integer. --- Inverse-square law. --- Irrational number. --- MATLAB. --- Mass ratio. --- Mathematical joke. --- Mathematical physics. --- Mathematical problem. --- Mathematician. --- Mathematics. --- Mean value theorem. --- Metric system. --- Minicomputer. --- Monte Carlo method. --- Natural number. --- Oliver Heaviside. --- Paul J. Nahin. --- Pauli exclusion principle. --- Periodic function. --- Phase transition. --- Prime factor. --- Prime number. --- Probability theory. --- Probability. --- Projectile. --- Pure mathematics. --- Quadratic equation. --- Quadratic formula. --- Quantity. --- Quantum mechanics. --- Quintic function. --- Random number. --- Random search. --- Random walk. --- Remainder. --- Resistor. --- Richard Feynman. --- Right angle. --- Second derivative. --- Simulation. --- Slant range. --- Small number. --- Special case. --- Square root. --- Summation. --- The Drunkard's Walk. --- Theorem. --- Thermodynamic equilibrium. --- Thought experiment. --- Trepidation (astronomy). --- Uniform distribution (discrete). --- Upper and lower bounds. --- Weightlessness. --- Zero of a function.


Book
The Secret Formula : How a Mathematical Duel Inflamed Renaissance Italy and Uncovered the Cubic Equation
Authors: ---
ISBN: 0691200327 Year: 2020 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The legendary Renaissance math duel that ushered in the modern age of algebraThe Secret Formula tells the story of two Renaissance mathematicians whose jealousies, intrigues, and contentious debates led to the discovery of a formula for the solution of the cubic equation. Niccolò Tartaglia was a talented and ambitious teacher who possessed a secret formula—the key to unlocking a seemingly unsolvable, two-thousand-year-old mathematical problem. He wrote it down in the form of a poem to prevent other mathematicians from stealing it. Gerolamo Cardano was a physician, gifted scholar, and notorious gambler who would not hesitate to use flattery and even trickery to learn Tartaglia's secret.Set against the backdrop of sixteenth-century Italy, The Secret Formula provides new and compelling insights into the peculiarities of Renaissance mathematics while bringing a turbulent and culturally vibrant age to life. It was an era when mathematicians challenged each other in intellectual duels held outdoors before enthusiastic crowds. Success not only enhanced the winner's reputation, but could result in prize money and professional acclaim. After hearing of Tartaglia's spectacular victory in one such contest in Venice, Cardano invited him to Milan, determined to obtain his secret by whatever means necessary. Cardano's intrigues paid off. In 1545, he was the first to publish a general solution of the cubic equation. Tartaglia, eager to take his revenge by establishing his superiority as the most brilliant mathematician of the age, challenged Cardano to the ultimate mathematical duel.A lively and compelling account of genius, betrayal, and all-too-human failings, The Secret Formula reveals the epic rivalry behind one of the fundamental ideas of modern algebra.

Keywords

Equations --- Algebra --- Mathematics --- History. --- Ars Magna. --- Arturo Sangalli. --- Blaise Pascal. --- Cardano-Tartaglia formula. --- Carl Friedrich Gauss. --- Euler's Pioneering Equation. --- Ian Stewart. --- Isaac Newton. --- Italian Renaissance. --- Joseph-Louis Lagrange. --- Leibniz. --- Lodovico Ferrari. --- Maria Gaetana Agnesi. --- Omar Khayyám. --- Pierre de Fermat. --- Rafael Bombelli. --- Renaissance men. --- Robin Wilson. --- Scipione del Ferro. --- Significant Figures. --- algebra. --- binomial coefficients. --- binomial theorem. --- coefficients. --- imaginary numbers. --- negative numbers. --- roots of the cubic function. --- Tartaglia, Niccolò, --- Cardano, Girolamo, --- Cardano, Girolamo --- Tartaglia, Niccolò --- 1500-1599 --- Tartaglia, Nicolaus --- Fontana, Niccolò --- Tartalea, Niccolò --- Tartaglia, Nicolas --- Tartalea, Nicolo --- Tartaglia, Nicolo --- Tartalea --- Mathematiker --- Rechenmeister --- Übersetzer --- Ingenieur --- Lehrer --- Prof. --- Brescia --- Venedig --- Verona --- 1500-1557 --- Cardano, Geronimo --- Cardano, Hieronimo --- Cardano, Hieronymus --- Cardano --- Cardani, Hieronymus --- Cardanus, Girolamo --- Cardanus, Hieronimus Castellioneus --- Cardanus, Hieronymus Castellioneus --- Cardanus, Hieronimus C. --- Cardanus, Hier. --- Cardanus --- Cardanus, H. --- Cardini, Hieronymus --- Giralmo --- Hieronymus --- Kardano, Dzhirolamo --- Cardano, Gerolamo --- Cardano, Giralmo --- Cardan, Jérôme --- Cardan, Hierosme --- Cardanus, Hieronymus C. --- Cardanus, Hieronymus --- Cardanus, Hierosme --- Castellioneus, Hieronymus --- Geronimo --- Girolamo --- Jérome --- Cardan, Girolamo --- Cardano, Hieronimus --- Jérôme --- Cardan --- Cardan, H. --- Naturwissenschaftler --- Astronom --- Philosoph --- Arzt --- Pavia --- Rom --- Padua --- Mailand --- Bologna --- Arnaldus --- Benvenutus Rambaldi --- Caesius, Georg --- Cardano, Giovanni Battista --- Cigalini, Francesco --- Dasypodius, Konrad --- Frölich, Huldrich --- Majoragio, Marcantonio --- Petrarca, Francesco --- Ursinus, Adam --- 24.09.1501-20.09.1576 --- 24.11.1501-01.09.1575 --- 1501-1576 --- 1501-1575 --- Fontana, Nicolò, --- Tartaglia, Nicholas, --- Tartaglia, Nicolas, --- Tartaglia, Nicolò, --- Tartaia, Nicolò, --- Tartalea, Nicolai, --- Cardan, H., --- Cardan, Jérôme, --- Cardano, Gerolamo, --- Cardano, Hieronimo, --- Cardanus, Hierome, --- Cardanus, Hieronymus, --- Cardanus, Hierosme, --- Kardano, Dzhirolamo, --- Cardan, Jerome --- Cardan, Jerome,


Book
The Calculus Gallery : Masterpieces from Newton to Lebesgue
Authors: ---
ISBN: 0691184542 Year: 2018 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway to higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. Now with a new preface by the author, this book documents the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching-a story of genius triumphing over some of the toughest, subtlest problems imaginable. In touring The Calculus Gallery, we can see how it all came to be.

Keywords

Calculus --- History. --- Absolute value. --- Addition. --- Algebraic number. --- Antiderivative. --- Arc length. --- Augustin-Louis Cauchy. --- Baire category theorem. --- Bernhard Riemann. --- Binomial theorem. --- Bounded function. --- Calculation. --- Central limit theorem. --- Characterization (mathematics). --- Coefficient. --- Complex analysis. --- Continuous function (set theory). --- Continuous function. --- Contradiction. --- Convergent series. --- Corollary. --- Countable set. --- Counterexample. --- Dense set. --- Derivative. --- Diagram (category theory). --- Dichotomy. --- Differentiable function. --- Differential calculus. --- Differential equation. --- Division by zero. --- Equation. --- Existential quantification. --- Fluxion. --- Fourier series. --- Fundamental theorem. --- Geometric progression. --- Geometric series. --- Geometry. --- Georg Cantor. --- Gottfried Wilhelm Leibniz. --- Harmonic series (mathematics). --- Henri Lebesgue. --- Infimum and supremum. --- Infinitesimal. --- Infinity. --- Integer. --- Integration by parts. --- Intermediate value theorem. --- Interval (mathematics). --- Joseph Fourier. --- Karl Weierstrass. --- L'Hôpital's rule. --- Lebesgue integration. --- Lebesgue measure. --- Length. --- Leonhard Euler. --- Limit of a sequence. --- Logarithm. --- Mathematical analysis. --- Mathematician. --- Mathematics. --- Mean value theorem. --- Measurable function. --- Natural number. --- Notation. --- Nowhere continuous function. --- Number theory. --- Pointwise. --- Polynomial. --- Power rule. --- Princeton University Press. --- Q.E.D. --- Quadratic. --- Quantity. --- Rational number. --- Real analysis. --- Real number. --- Rectangle. --- Riemann integral. --- Root test. --- Scientific notation. --- Series (mathematics). --- Set theory. --- Sign (mathematics). --- Stone–Weierstrass theorem. --- Subset. --- Subtangent. --- Summation. --- Tangent. --- Textbook. --- Theorem. --- Theory. --- Transcendental number. --- Trigonometric functions. --- Uniform continuity. --- Uniform convergence. --- Unit interval. --- Upper and lower bounds. --- Vito Volterra. --- Westmont College.

Listing 1 - 9 of 9
Sort by