Listing 1 - 10 of 24 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
At last - a book devoted to the negative binomial model and its many variations. Every model currently offered in commercial statistical software packages is discussed in detail - how each is derived, how each resolves a distributional problem, and numerous examples of their application. Many have never before been thoroughly examined in a text on count response models: the canonical negative binomial; the NB-P model, where the negative binomial exponent is itself parameterized; and negative binomial mixed models. As the models address violations of the distributional assumptions of the basic Poisson model, identifying and handling overdispersion is a unifying theme. For practising researchers and statisticians who need to update their knowledge of Poisson and negative binomial models, the book provides a comprehensive overview of estimating methods and algorithms used to model counts, as well as specific guidelines on modeling strategy and how each model can be analyzed to access goodness-of-fit.
Choose an application
This second edition of Hilbe's Negative Binomial Regression is a substantial enhancement to the popular first edition. The only text devoted entirely to the negative binomial model and its many variations, nearly every model discussed in the literature is addressed. The theoretical and distributional background of each model is discussed, together with examples of their construction, application, interpretation and evaluation. Complete Stata and R codes are provided throughout the text, with additional code (plus SAS), derivations and data provided on the book's website. Written for the practising researcher, the text begins with an examination of risk and rate ratios, and of the estimating algorithms used to model count data. The book then gives an in-depth analysis of Poisson regression and an evaluation of the meaning and nature of overdispersion, followed by a comprehensive analysis of the negative binomial distribution and of its parameterizations into various models for evaluating count data.
Negative binomial distribution --- Poisson algebras --- regressie-analyse --- 519.2 --- 519.2 Probability. Mathematical statistics --- Probability. Mathematical statistics --- Algebras, Poisson --- Associative algebras --- Pascal distribution --- Binomial distribution --- Wiskundige statistiek --- Negative binomial distribution. --- Poisson algebras.
Choose an application
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations.Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Clayton recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. He highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics.Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach―that is, to incorporate prior knowledge when reasoning with incomplete information―in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli’s Fallacy explains why something has gone wrong with how we use data―and how to fix it.
Probabilities --- Mathematical statistics --- Law of large numbers --- Bernoulli, Jakob, 1654-1705 --- Binomial distribution. --- Law of large numbers. --- Influence (Literary, artistic, etc.) --- Philosophy --- History --- Philosophy. --- Bernoulli, Jakob, --- Influence. --- 1800-1999
Choose an application
This paper examines the problem of variable selection in linear regression models. Bayesian model averaging has become an important tool in empirical settings with large numbers of potential regressors and relatively limited numbers of observations. The paper analyzes the effect of a variety of prior assumptions on the inference concerning model size, posterior inclusion probabilities of regressors, and predictive performance. The analysis illustrates these issues in the context of cross-country growth regressions using three datasets with 41 to 67 potential drivers of growth and 72 to 93 observations. The results favor particular prior structures for use in this and related contexts.
Area --- Arts and Music --- Binomial distribution --- Classification --- Culture & Development --- Drawing --- Drawings --- Educational Technology and Distance Learning --- Essays --- Geographical Information Systems --- Information Security and Privacy --- Literature --- Performances --- Picture --- Science and Technology Development --- Simulation --- Statistical and Mathematical Sciences
Choose an application
This paper examines the problem of variable selection in linear regression models. Bayesian model averaging has become an important tool in empirical settings with large numbers of potential regressors and relatively limited numbers of observations. The paper analyzes the effect of a variety of prior assumptions on the inference concerning model size, posterior inclusion probabilities of regressors, and predictive performance. The analysis illustrates these issues in the context of cross-country growth regressions using three datasets with 41 to 67 potential drivers of growth and 72 to 93 observations. The results favor particular prior structures for use in this and related contexts.
Area --- Arts and Music --- Binomial distribution --- Classification --- Culture & Development --- Drawing --- Drawings --- Educational Technology and Distance Learning --- Essays --- Geographical Information Systems --- Information Security and Privacy --- Literature --- Performances --- Picture --- Science and Technology Development --- Simulation --- Statistical and Mathematical Sciences
Listing 1 - 10 of 24 | << page >> |
Sort by
|