Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Le cancer du sein représente 35 % de la totalité des cas de cancers chez la femme. Dans ce cadre, 5 à 10% des cancers du sein sont héréditaires. Les gènes BRCA I et 2 expliquent 20% de cancers familiaux. BRCAI et 2 sont des gènes suppresseurs de tumeur codant pour des protéines notamment impliquées dans la réparation des cassures doubles brins de l'ADN. Les cancers du sein causés par une mutation de BRCA J /2, dans 80% des cas, n'expriment pas les récepteurs hormonaux ni HER2 et sont dits « triple-négatifs ». Ce type de cancer est plus agressif et a un plus haut risque de récidive et de généralisation. Il n'existe encore aucune thérapie ciblant spécifiquement les cancers BRCA mutés. De plus, la mutation peut se transmettre par voie autosomique dominante si elle se produit dans les cellules germinales. Ayant connaissance de ces éléments, ce mémoire réalise, le plus complètement possible, un tour d'horizon des thérapies actuellement utilisées dans les stades néo adjuvant, adjuvant et métastatique en fonction des caractéristiques tumorales et de l'expression des récepteurs hormonaux et HER2. Une attention particulière est portée sur les cancers du sein triple négatifs qui sont pour la plupart d'entre eux BRCA mutés. Une nouvelle classe thérapeutique encore à l'étude est abordée. Il s'agit des inhibiteurs de poly ADP-ribose polymérase. Une mise au point sur leur mécanisme d'action et sur les agents développés et leurs résultats en phase précoce est présentée.La mutation étant héréditaire et le risque de cancer étant beaucoup plus élevé et d'apparition précoce, la question de l'évaluation du risque familial de cancer du sein est posée. Les guidelines d'évaluation du risque sont décrites ainsi que les mesures préventives (examens et traitement) à mettre en place en fonction de la gravité du risque. Breast cancer accounts for 35% all cancers cases in woman. Within this framework, 5 to 10 % breast cancers are hereditary. Genes BRCA1 and 2 explain 20% of family cancers. BRCA1 and 2 are tumor suppressor genes coding for proteins particularly involved in the repair of double strand breaks in DNA. Breast cancers caused by a BRCA1 /2 mutation don’t express the hormone receptors nor HER2 in 80% of cases. They are called “triple-negative”. This type of cancer is more aggressive and has a higher risk of recurrence and generalization. There is yet no therapy specifically targeting mutated BRCA cancers. In addition, the mutation can be transmitted autosomal dominantly if it occurs in germ cells. Knowing these elements, this report provides as completely as possible a review of the therapies currently used in neoadjuvant, adjuvant and metastatic setting as function of the tumor characteristics and the expression of the hormonal and HER2 receptors. Particular attention is focused on triple negative breast cancers which are for most of them BRCA mutated. A new therapeutic class is still being studied. These are poly-ADP-ribose polymerase inhibitors. An update on their mechanism of action and on the agents developed and their results in the early phase is presented. The mutation being hereditary and the risk of cancer being much higher and of early onset, the question of the assessment of family risk of breast cancer is asked. The risk assessment guidelines are described as well as the preventive measures (examinations and treatment) to be implemented according to the seriousness of the risk.
Genes, BRCA1 --- Genes, BRCA2 --- Breast Neoplasms
Choose an application
Le cancer du sein touche une partie importante de la population féminine. Bien que ce cancer ait un bon pronostic, le cancer du sein triple négatif est d'une tout autre mesure, beaucoup plus agressif. En effet, ce cancer est caractérisé par l'absence d'expression des récepteurs aux œstrogènes et à la progestérone, ainsi que par l'absence de surexpression du récepteur Her-2. Par conséquent, il ne répond pas aux traitements habituels, ciblant ces récepteurs. Des altérations dans les gènes codant pour les protéines BRCA I et BRCA2 ont été associées à ce type de cancer et offrent des pistes nouvelles de compréhension de la maladie. Des mutations au sein de ces gènes amènent de nombreux dommages à l'ADN. BRCAI et BRCA2 forment en effet des complexes distincts nécessaires à la recombinaison homologue. BRCA1 possède également des rôles supplémentaires : il permet l'arrêt du cycle cellulaire menant à la réparation ou à l'apoptose de la cellule et contrôle l'amplification des centrosomes permettant d'éviter la formation de cellules aneuploïdiques. Il n'existe pas de traitements efficaces pour ce cancer très agressif; ces dernières années, seuls les inhibiteurs de PARP ont montré une certaine activité thérapeutique. Ces derniers sont, cependant, sujets à des phénomènes de résistance. Actuellement, seul le dépistage précoce en particulier chez les patients à risque permet de maximiser les chances de traitement curatif. La mastectomie préventive permet par ailleurs de prendre les devants sur l'apparition du cancer. Breast cancer affects a significant proportion of the women population. Although this cancer has usually a good prognosis, the so-called triple negative breast cancer is much more aggressive. Indeed, this cancer is characterized by the absence of the expression of estrogen and progesterone receptors as well as by the lack of Her-2 receptor overexpression. Therefore, this cancer does not respond to conventional treatment targeting these receptors. Alterations in the genes that encode the BRCA1 and BRCA2 proteins are now associated with this type of cancer and offer new avenues for understanding the disease. Mutations in these genes lead to many DNA damages. Indeed, BRCA1 and BRCA2 form distinct complexes that are necessary for homologous recombination. BRCA1 gas also additional roles: it allows cell cycle arrest to facilitate DNA repair or instead promotes cell apoptosis, and controls centrosome amplification to avoid aneuploidy. There are no highly efficient treatments for this aggressive cancer besides PARP inhibitors that show some therapeutic activity in the last years. Those are, however, subject to resistance phenomena. Currently, only early diagnosis in particular for patients at risk allows to maximize the chances of curative treatments. Preventive mastectomy can also be proposed to anticipate cancer development.
Triple Negative Breast Neoplasms --- BRCA1 Protein --- BRCA2 Protein
Choose an application
Le cancer gynécologique est héréditaire dans environ 10 à 15% des cas. L'héritage de mutations inactivatrices des gènes suppresseurs de tumeurs BRCA 1-2, impliqués dans la réparation de cassures doubles brins de l'ADN par recombinaison homologue, prédispose génétiquement au développement de ce type de cancer. Les inhibiteurs de poly(ADP)ribose polymérase (PARP), une nouvelle classe de médicaments, représentent un traitement efficace et prometteur dans la prise en charge des patientes atteintes d'un cancer BRCA muté. L'inhibition de l'action de cette enzyme, qui participe à la réparation de cassures simples brins de l'ADN, induit une létalité synthétique à cause d'une double déficience dans les voies de réparation de l'ADN, ce qui conduit à la mort des cellules tumorales. L' olaparib a été la première molécule de cette nouvelle classe à bénéficier d'une approbation accélérée par la FDA et par l'EMEA en 2014. Utilisé en monothérapie d'entretien, elle permet une réduction du risque de rechute après une chimiothérapie à base de platine en allongeant la survie sans progression, et possède un profil de sécurité/toxicité favorable sur le long-terme. L'olaparib est administré quotidiennement chez les femmes porteuses d'un cancer gynécologique avec une mutation confirmée des gènes BRCA par un test approuvé par la FDA. La présence d'anomalies génétiques au niveau de ces gènes est un biomarqueur nécessaire à l'autorisation de l'utilisation du médicament. Gynecological cancer is hereditary in about 10 to 15% of cases. Inheritance of inactivating mutations of tumor suppressor genes BRCA 1-2, involved in double strand break DNA repair by homologous recombination, genetically predisposes to developing this type of cancer. Inhibitors of poly(ADP)ribose polymerases (PARP), a new class of drugs, represent an effective and promising treatment for patients with BRCA-mutated cancers. Inhibition of the enzyme, which is involved in DNA single strand break repair, induces synthetic lethality due to a double deficiency in DNA repair pathways which leads to tumor cell death. Olaparib was the first molecule of this new class to obtain accelerated FDA and EMEA approval in 2014. Used as a maintenance monotherapy, it reduces the risk of relapse after platinum-based chemotherapy by prolonging progression-free survival, and it has a long-term favorable safety/toxicity profile. Olaparib is administered daily to women carrying a gynecological cancer with a confirmed mutation in BRCA genes by a FDA-approved test. The presence of genetic abnormalities in these genes is a biomarker required to allow the use of this drug.
Olaparib --- Antineoplastic Agents --- Poly (ADP-Ribose) Polymerase-1 --- Genes, BRCA1 --- Genes, BRCA2
Choose an application
Breast Neoplasms --- Genetic Counseling --- Genes, BRCA1 --- Genes, BRCA2 --- Logistic Models --- Risk Assessment --- etiology --- methods --- genetics
Choose an application
Despite the efficiency of current cancer treatments, cancer is still a deadly disease for too many. In 2008, 7.6 million people died of cancer; with the current development, it is estimated that the annual cancer death number will grow to 13 million by 2030. There is clearly a need for not only more research but also more innovative and out of the mainstream scientific ideas to discover and develop even better cancer treatments. This book presents the collective works published in the recent Special Issue entitled “Killing Cancer: Discovery and Selection of New Target Molecules”. These articles comprise a selection of studies, ideas, and opinions that aim to facilitate knowledge, thoughts, and discussion about which biological and molecular mechanisms in cancer we should target and how we should target them.
ferlin --- myoferlin --- dysferlin --- otoferlin --- C2 domain --- plasma membrane --- sulconazole --- NF-κB --- IL-8 --- mammosphere --- breast cancer stem cells --- AF1Q --- MLLT11 --- WNT --- STAT --- esophageal cancer --- prognosis --- mTORC1 --- mTORC2 --- metabolism --- rapalogs --- mTOR inhibitors --- cancer metabolism --- mTOR in immunotherapy --- nutrient metabolism --- kinase inhibitors --- mTOR signaling --- MAPK kinase --- ERK1 --- ERK2 --- CD domain --- Rolled --- SCH772984 --- VRT-11E --- sevenmaker --- cancer therapy --- EMT --- lysosome --- lysosome-mediated invasion --- MZF1 --- phosphorylation --- PAK4 --- SUMOylation --- transcription factor --- zinc finger --- glucocorticoids --- 3D growth --- nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) --- epithelial–mesenchymal transition --- anoikis --- proliferation --- targeted cancer therapy --- disulfiram --- NPL4 --- replication stress --- DNA damage --- BRCA1 --- BRCA2 --- ATR pathway --- PDAC --- TCIRG1 --- ATP6V0a3 --- invasion --- migration --- matrix degradation --- pH-regulation --- autophagy --- multidrug resistance in cancer --- drug efflux pumps --- ATP-binding cassette transporter --- breast cancer resistance protein (BCRP) --- ABCG2 --- pyrazolo-pyrimidine derivative --- SCO-201 --- colorectal cancer --- immunotherapy --- inflammation --- microsatellite instability --- oncofetal chondroitin sulfate --- chondroitin sulfate --- cancer --- solid tumors --- target --- pediatric cancer --- VAR2 --- dexamethasone --- thyroid cancer --- microgravity --- space environment --- n/a --- epithelial-mesenchymal transition
Choose an application
Despite the efficiency of current cancer treatments, cancer is still a deadly disease for too many. In 2008, 7.6 million people died of cancer; with the current development, it is estimated that the annual cancer death number will grow to 13 million by 2030. There is clearly a need for not only more research but also more innovative and out of the mainstream scientific ideas to discover and develop even better cancer treatments. This book presents the collective works published in the recent Special Issue entitled “Killing Cancer: Discovery and Selection of New Target Molecules”. These articles comprise a selection of studies, ideas, and opinions that aim to facilitate knowledge, thoughts, and discussion about which biological and molecular mechanisms in cancer we should target and how we should target them.
Research & information: general --- Biology, life sciences --- ferlin --- myoferlin --- dysferlin --- otoferlin --- C2 domain --- plasma membrane --- sulconazole --- NF-κB --- IL-8 --- mammosphere --- breast cancer stem cells --- AF1Q --- MLLT11 --- WNT --- STAT --- esophageal cancer --- prognosis --- mTORC1 --- mTORC2 --- metabolism --- rapalogs --- mTOR inhibitors --- cancer metabolism --- mTOR in immunotherapy --- nutrient metabolism --- kinase inhibitors --- mTOR signaling --- MAPK kinase --- ERK1 --- ERK2 --- CD domain --- Rolled --- SCH772984 --- VRT-11E --- sevenmaker --- cancer therapy --- EMT --- lysosome --- lysosome-mediated invasion --- MZF1 --- phosphorylation --- PAK4 --- SUMOylation --- transcription factor --- zinc finger --- glucocorticoids --- 3D growth --- nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) --- epithelial-mesenchymal transition --- anoikis --- proliferation --- targeted cancer therapy --- disulfiram --- NPL4 --- replication stress --- DNA damage --- BRCA1 --- BRCA2 --- ATR pathway --- PDAC --- TCIRG1 --- ATP6V0a3 --- invasion --- migration --- matrix degradation --- pH-regulation --- autophagy --- multidrug resistance in cancer --- drug efflux pumps --- ATP-binding cassette transporter --- breast cancer resistance protein (BCRP) --- ABCG2 --- pyrazolo-pyrimidine derivative --- SCO-201 --- colorectal cancer --- immunotherapy --- inflammation --- microsatellite instability --- oncofetal chondroitin sulfate --- chondroitin sulfate --- cancer --- solid tumors --- target --- pediatric cancer --- VAR2 --- dexamethasone --- thyroid cancer --- microgravity --- space environment --- ferlin --- myoferlin --- dysferlin --- otoferlin --- C2 domain --- plasma membrane --- sulconazole --- NF-κB --- IL-8 --- mammosphere --- breast cancer stem cells --- AF1Q --- MLLT11 --- WNT --- STAT --- esophageal cancer --- prognosis --- mTORC1 --- mTORC2 --- metabolism --- rapalogs --- mTOR inhibitors --- cancer metabolism --- mTOR in immunotherapy --- nutrient metabolism --- kinase inhibitors --- mTOR signaling --- MAPK kinase --- ERK1 --- ERK2 --- CD domain --- Rolled --- SCH772984 --- VRT-11E --- sevenmaker --- cancer therapy --- EMT --- lysosome --- lysosome-mediated invasion --- MZF1 --- phosphorylation --- PAK4 --- SUMOylation --- transcription factor --- zinc finger --- glucocorticoids --- 3D growth --- nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) --- epithelial-mesenchymal transition --- anoikis --- proliferation --- targeted cancer therapy --- disulfiram --- NPL4 --- replication stress --- DNA damage --- BRCA1 --- BRCA2 --- ATR pathway --- PDAC --- TCIRG1 --- ATP6V0a3 --- invasion --- migration --- matrix degradation --- pH-regulation --- autophagy --- multidrug resistance in cancer --- drug efflux pumps --- ATP-binding cassette transporter --- breast cancer resistance protein (BCRP) --- ABCG2 --- pyrazolo-pyrimidine derivative --- SCO-201 --- colorectal cancer --- immunotherapy --- inflammation --- microsatellite instability --- oncofetal chondroitin sulfate --- chondroitin sulfate --- cancer --- solid tumors --- target --- pediatric cancer --- VAR2 --- dexamethasone --- thyroid cancer --- microgravity --- space environment
Listing 1 - 6 of 6 |
Sort by
|