Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Extensive research into the molecular mechanisms of cancer disease has heralded a new age of targeted therapy. In malignant cells, key proteins that are crucial to tumor growth and survival are now being targeted directly with rationally designed inhibitors. Apart from monoclonal antibodies, small molecule therapeutics such as oncogenic protein kinase inhibitors are attracting a vast amount of investigational attention. This textbook, written by acknowledged experts, provides a broad overview of the small molecules currently used for the treatment of malignant diseases and discusses interesting novel compounds that are in the process of clinical development to combat cancer.
Antineoplastic agents. --- Cancer -- Molecular aspects. --- Cancer -- Treatment. --- Cancer. --- Cancer --- Antineoplastic agents --- Enzyme Inhibitors --- Aza Compounds --- Cytidine --- Therapeutics --- Therapeutic Uses --- Diseases --- Azacitidine --- Protein Kinase Inhibitors --- Antineoplastic Agents --- Drug Therapy --- Neoplasms --- Analytical, Diagnostic and Therapeutic Techniques and Equipment --- Pyrimidine Nucleosides --- Pharmacologic Actions --- Ribonucleosides --- Molecular Mechanisms of Pharmacological Action --- Organic Chemicals --- Chemical Actions and Uses --- Nucleosides --- Pyrimidines --- Chemicals and Drugs --- Nucleic Acids, Nucleotides, and Nucleosides --- Heterocyclic Compounds, 1-Ring --- Heterocyclic Compounds --- Medicine --- Oncology --- Health & Biological Sciences --- Molecular aspects --- Treatment --- Molecular aspects. --- Treatment. --- Cancer therapy --- Cancer treatment --- Anticancer agents --- Antineoplastic drugs --- Antineoplastics --- Antitumor agents --- Antitumor drugs --- Cytotoxic drugs --- Inhibitors, Neoplasm --- Neoplasm inhibitors --- Therapy --- Medicine. --- Cancer research. --- Hematology. --- Oncology. --- Medicine & Public Health. --- Cancer Research. --- Haematology --- Internal medicine --- Blood --- Tumors --- Cancer research --- Clinical sciences --- Medical profession --- Human biology --- Life sciences --- Medical sciences --- Pathology --- Physicians --- Drugs --- Chemotherapy
Choose an application
The book gives an overview on the progress that has been made in the treatment of acute lymphoblastic leukemia (ALL), of acute and chronic myeloid leukemia (AML, CML) and of juvenile myelomonocytic leukemia (JMML). Leukemia is the most common malignant disease in children, and 80% of patients are diagnosed with ALL and 15–20% with AML, whereas CML and JMML are rather rare. Although ALL was considered an incurable disease until the early 1960s, with the availability of cytotoxic drugs and the start of clinical multicenter studies, ALL has become an almost curable disease with a survival rate exceeding 90 % in high-income countries. These impressive results have mainly been achieved by a deeper understanding of the genomic landscape of the disease and the introduction of risk stratifications based on genetic features and response to chemotherapy as determined by the presence or absence of minimal residual disease (MRD). Immunotherapies including bispecific T-cell Engagers (BiTEs), Chimeric Antigen Receptor (CAR) T cells, monoclonal antibodies and improvements in the outcome of allogeneic stem cell transplantation (HSCT) have shown impressive results in chemorefractory or relapsed patients, and it is anticipated that the cure rate can be further increased. For countries with less resources, therapies have to be adapted to increase survival as well. This book also updates on the progress made in the treatment of AML. As in ALL, risk classification based on genetic factors and response to chemotherapy is most important for therapy guidance. The book also provides updates and guidance for the treatment of CML and JMML.
Research & information: general --- Chemistry --- acute lymphoblastic leukemia --- pediatric --- advances --- diagnosis --- treatment --- immunotherapy --- bispecific T-cell engager (BiTE) --- BCP-ALL --- leukemia --- TRAIL --- antibody --- Fc-engineering --- xenograft --- CD19 --- juvenile myelomonocytic leukemia --- RAS signaling --- hematopoietic stem cell transplantation --- 5-azacitidine --- myelodysplastic/myeloproliferative disorders --- targeted therapy --- ADC --- antibody–drug conjugate --- pediatric leukemia --- ALL --- AML --- allogeneic stem cell transplantation --- acute myeloid leukemia --- minimal residual disease --- conditioning regimen --- alternative donors --- B-ALL --- DUX4 --- IKZF1 --- PAX5 --- Ph-like --- ZNF384 --- NUTM1 --- T-ALL --- NOTCH1 --- BCL11B --- transcriptome --- genome --- chronic myeloid leukemia --- CML --- tyrosine kinase inhibitor --- immunizations --- COVID-19 --- childhood acute lymphoblastic leukemia --- low-risk ALL --- risk-stratified treatment --- treatment related toxicity --- L-asparaginase --- acute pancreatitis --- polymorphism --- SNV --- ABCC4 --- CFTR --- other extramedullary relapse --- lymphoblastic leukemia --- children --- prognosis --- evolution of CAR T cells --- FDA-approved CAR products --- TcR versus CAR --- limitations and complications of CAR T cell therapy --- future directions of CAR T cell therapy --- n/a --- antibody-drug conjugate
Choose an application
The book gives an overview on the progress that has been made in the treatment of acute lymphoblastic leukemia (ALL), of acute and chronic myeloid leukemia (AML, CML) and of juvenile myelomonocytic leukemia (JMML). Leukemia is the most common malignant disease in children, and 80% of patients are diagnosed with ALL and 15–20% with AML, whereas CML and JMML are rather rare. Although ALL was considered an incurable disease until the early 1960s, with the availability of cytotoxic drugs and the start of clinical multicenter studies, ALL has become an almost curable disease with a survival rate exceeding 90 % in high-income countries. These impressive results have mainly been achieved by a deeper understanding of the genomic landscape of the disease and the introduction of risk stratifications based on genetic features and response to chemotherapy as determined by the presence or absence of minimal residual disease (MRD). Immunotherapies including bispecific T-cell Engagers (BiTEs), Chimeric Antigen Receptor (CAR) T cells, monoclonal antibodies and improvements in the outcome of allogeneic stem cell transplantation (HSCT) have shown impressive results in chemorefractory or relapsed patients, and it is anticipated that the cure rate can be further increased. For countries with less resources, therapies have to be adapted to increase survival as well. This book also updates on the progress made in the treatment of AML. As in ALL, risk classification based on genetic factors and response to chemotherapy is most important for therapy guidance. The book also provides updates and guidance for the treatment of CML and JMML.
acute lymphoblastic leukemia --- pediatric --- advances --- diagnosis --- treatment --- immunotherapy --- bispecific T-cell engager (BiTE) --- BCP-ALL --- leukemia --- TRAIL --- antibody --- Fc-engineering --- xenograft --- CD19 --- juvenile myelomonocytic leukemia --- RAS signaling --- hematopoietic stem cell transplantation --- 5-azacitidine --- myelodysplastic/myeloproliferative disorders --- targeted therapy --- ADC --- antibody–drug conjugate --- pediatric leukemia --- ALL --- AML --- allogeneic stem cell transplantation --- acute myeloid leukemia --- minimal residual disease --- conditioning regimen --- alternative donors --- B-ALL --- DUX4 --- IKZF1 --- PAX5 --- Ph-like --- ZNF384 --- NUTM1 --- T-ALL --- NOTCH1 --- BCL11B --- transcriptome --- genome --- chronic myeloid leukemia --- CML --- tyrosine kinase inhibitor --- immunizations --- COVID-19 --- childhood acute lymphoblastic leukemia --- low-risk ALL --- risk-stratified treatment --- treatment related toxicity --- L-asparaginase --- acute pancreatitis --- polymorphism --- SNV --- ABCC4 --- CFTR --- other extramedullary relapse --- lymphoblastic leukemia --- children --- prognosis --- evolution of CAR T cells --- FDA-approved CAR products --- TcR versus CAR --- limitations and complications of CAR T cell therapy --- future directions of CAR T cell therapy --- n/a --- antibody-drug conjugate
Choose an application
The book gives an overview on the progress that has been made in the treatment of acute lymphoblastic leukemia (ALL), of acute and chronic myeloid leukemia (AML, CML) and of juvenile myelomonocytic leukemia (JMML). Leukemia is the most common malignant disease in children, and 80% of patients are diagnosed with ALL and 15–20% with AML, whereas CML and JMML are rather rare. Although ALL was considered an incurable disease until the early 1960s, with the availability of cytotoxic drugs and the start of clinical multicenter studies, ALL has become an almost curable disease with a survival rate exceeding 90 % in high-income countries. These impressive results have mainly been achieved by a deeper understanding of the genomic landscape of the disease and the introduction of risk stratifications based on genetic features and response to chemotherapy as determined by the presence or absence of minimal residual disease (MRD). Immunotherapies including bispecific T-cell Engagers (BiTEs), Chimeric Antigen Receptor (CAR) T cells, monoclonal antibodies and improvements in the outcome of allogeneic stem cell transplantation (HSCT) have shown impressive results in chemorefractory or relapsed patients, and it is anticipated that the cure rate can be further increased. For countries with less resources, therapies have to be adapted to increase survival as well. This book also updates on the progress made in the treatment of AML. As in ALL, risk classification based on genetic factors and response to chemotherapy is most important for therapy guidance. The book also provides updates and guidance for the treatment of CML and JMML.
Research & information: general --- Chemistry --- acute lymphoblastic leukemia --- pediatric --- advances --- diagnosis --- treatment --- immunotherapy --- bispecific T-cell engager (BiTE) --- BCP-ALL --- leukemia --- TRAIL --- antibody --- Fc-engineering --- xenograft --- CD19 --- juvenile myelomonocytic leukemia --- RAS signaling --- hematopoietic stem cell transplantation --- 5-azacitidine --- myelodysplastic/myeloproliferative disorders --- targeted therapy --- ADC --- antibody-drug conjugate --- pediatric leukemia --- ALL --- AML --- allogeneic stem cell transplantation --- acute myeloid leukemia --- minimal residual disease --- conditioning regimen --- alternative donors --- B-ALL --- DUX4 --- IKZF1 --- PAX5 --- Ph-like --- ZNF384 --- NUTM1 --- T-ALL --- NOTCH1 --- BCL11B --- transcriptome --- genome --- chronic myeloid leukemia --- CML --- tyrosine kinase inhibitor --- immunizations --- COVID-19 --- childhood acute lymphoblastic leukemia --- low-risk ALL --- risk-stratified treatment --- treatment related toxicity --- L-asparaginase --- acute pancreatitis --- polymorphism --- SNV --- ABCC4 --- CFTR --- other extramedullary relapse --- lymphoblastic leukemia --- children --- prognosis --- evolution of CAR T cells --- FDA-approved CAR products --- TcR versus CAR --- limitations and complications of CAR T cell therapy --- future directions of CAR T cell therapy
Listing 1 - 4 of 4 |
Sort by
|