Listing 1 - 10 of 35 | << page >> |
Sort by
|
Choose an application
This paper considers the estimation of the variance of coefficients in time varying parameter models with stationary regressors. The maximum likelihood estimator has large point mass at zero. We therefore develop asymptotically median unbiased estimators and confidence intervals by inverting median functions of regression-based parameter stability test statistics, computed under the constant-parameter null. These estimators have good asymptotic relative efficiencies for small to moderate amounts of parameter variability. We apply these results to an unobserved components model of trend growth in postwar U.S. GDP: the MLE implies that there has been no change in the trend rate, while the upper range of the median-unbiased point estimates imply that the annual trend growth rate has fallen by 0.7 percentage points over the postwar period.
Choose an application
Choose an application
Choose an application
This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.
Choose an application
Choose an application
This book presents recent methods of study on the asymptotic behavior of solutions of abstract differential equations such as stability, exponential dichotomy, periodicity, almost periodicity, and almost automorphy of solutions. The chosen methods are described in a way that is suitable to those who have some experience with ordinary differential equations. The book is intended for graduate students and researchers in the related areas.
Choose an application
Choose an application
Choose an application
Stochastic processes --- Convergence --- Central limit theorem --- 519.214 --- 10.04 --- Functions --- Asymptotic distribution (Probability theory) --- Limit theorems (Probability theory) --- Limit theorems --- Verzekeringswiskunde ; Numerieke analyse --- 519.214 Limit theorems
Choose an application
Listing 1 - 10 of 35 | << page >> |
Sort by
|