Narrow your search

Library

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

Vlaams Parlement (4)

More...

Resource type

book (9)

periodical (1)


Language

English (10)


Year
From To Submit

2022 (3)

2021 (6)

2013 (1)

Listing 1 - 10 of 10
Sort by

Periodical
Algerian journal of natural products
Author:
ISSN: 23530391 Year: 2013 Publisher: Bejaia, Algeria : University of Bejala,


Book
Bioactive Natural Products from the Red Sea
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the recent advances in natural product chemistry and biodiversity in the Red Sea. All previous marine natural products isolated from different Red Sea organisms and microbes were collected in a comprehensive review. Additionally, newly discovered marine natural products and their biological activities are described.


Book
Bioactive Natural Products from the Red Sea
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the recent advances in natural product chemistry and biodiversity in the Red Sea. All previous marine natural products isolated from different Red Sea organisms and microbes were collected in a comprehensive review. Additionally, newly discovered marine natural products and their biological activities are described.


Book
Bioactive Natural Products from the Red Sea
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the recent advances in natural product chemistry and biodiversity in the Red Sea. All previous marine natural products isolated from different Red Sea organisms and microbes were collected in a comprehensive review. Additionally, newly discovered marine natural products and their biological activities are described.


Book
The Health Benefits of the Bioactive Compounds in Foods
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of new foods or nutraceuticals with health benefits is among today’s most important issues, which presents an opportune moment for the food and/or pharmaceutical industries. However, the launch of new products should be supported by strong scientific evidence on the health benefits attributable to the intake of these bioactive food ingredients. Studies focusing on changes during the storage conditions, digestion process, intestinal absorption rates, biological mechanisms of action, or bioactivity of their metabolites are also required to establish the real contribution of these compounds to the health status of today’s societies

Keywords

Humanities --- Social interaction --- phytochemicals --- antioxidant --- antinausea --- antiobesity --- anticancer --- anti-inflammatory --- ‘Cara Cara’ juice --- storage --- hydrophilic and lipophilic antioxidant --- carotenoid --- flavonoid --- degradation --- dried distilled spent grain (DDSG) --- melanoidins --- content --- structure --- antioxidant activity --- ACE-inhibitory activity --- beverages --- brewing method --- antioxidant potential --- total polyphenols content --- mineral composition --- grape stem --- phenolic compounds --- central composite rotatable design --- sustainable food systems --- pressurized liquid extraction --- side streams valorisation --- curcumin --- milk proteins --- nanoparticles --- antimicrobial activities --- bioactive peptides --- hypertension --- functional food --- metabolic syndrome --- microbiota --- insulin sensitivity --- polyphenols --- grape pomace --- donkey milk (DM) --- donkey colostrum (DC) --- mammal’s milk --- cow’s milk protein allergy (CMPA) --- biologic activity --- immunosenescence --- health benefits --- cryoconcentration --- calafate juice --- storage time --- physicochemical properties --- bioactive compounds --- sensorial analysis --- apitherapy --- royal jelly --- propolis --- bee pollen --- sarcopenia --- dietary interventions --- muscle --- skeletal --- muscle wasting --- physical performance --- coronavirus disease 2019 --- COVID-19 --- body composition --- lean body mass --- insulin resistance --- mitochondrial dysfunction --- satellite stem cells --- polysaccharide purification --- anti-obesity --- proliferation --- PPARγ --- biological activities --- isolation --- analysis --- mechanism of action --- bioaccessibility --- intestinal absorption --- bioavailability


Book
The Health Benefits of the Bioactive Compounds in Foods
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of new foods or nutraceuticals with health benefits is among today’s most important issues, which presents an opportune moment for the food and/or pharmaceutical industries. However, the launch of new products should be supported by strong scientific evidence on the health benefits attributable to the intake of these bioactive food ingredients. Studies focusing on changes during the storage conditions, digestion process, intestinal absorption rates, biological mechanisms of action, or bioactivity of their metabolites are also required to establish the real contribution of these compounds to the health status of today’s societies

Keywords

Humanities --- Social interaction --- phytochemicals --- antioxidant --- antinausea --- antiobesity --- anticancer --- anti-inflammatory --- ‘Cara Cara’ juice --- storage --- hydrophilic and lipophilic antioxidant --- carotenoid --- flavonoid --- degradation --- dried distilled spent grain (DDSG) --- melanoidins --- content --- structure --- antioxidant activity --- ACE-inhibitory activity --- beverages --- brewing method --- antioxidant potential --- total polyphenols content --- mineral composition --- grape stem --- phenolic compounds --- central composite rotatable design --- sustainable food systems --- pressurized liquid extraction --- side streams valorisation --- curcumin --- milk proteins --- nanoparticles --- antimicrobial activities --- bioactive peptides --- hypertension --- functional food --- metabolic syndrome --- microbiota --- insulin sensitivity --- polyphenols --- grape pomace --- donkey milk (DM) --- donkey colostrum (DC) --- mammal’s milk --- cow’s milk protein allergy (CMPA) --- biologic activity --- immunosenescence --- health benefits --- cryoconcentration --- calafate juice --- storage time --- physicochemical properties --- bioactive compounds --- sensorial analysis --- apitherapy --- royal jelly --- propolis --- bee pollen --- sarcopenia --- dietary interventions --- muscle --- skeletal --- muscle wasting --- physical performance --- coronavirus disease 2019 --- COVID-19 --- body composition --- lean body mass --- insulin resistance --- mitochondrial dysfunction --- satellite stem cells --- polysaccharide purification --- anti-obesity --- proliferation --- PPARγ --- biological activities --- isolation --- analysis --- mechanism of action --- bioaccessibility --- intestinal absorption --- bioavailability


Book
The Health Benefits of the Bioactive Compounds in Foods
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of new foods or nutraceuticals with health benefits is among today’s most important issues, which presents an opportune moment for the food and/or pharmaceutical industries. However, the launch of new products should be supported by strong scientific evidence on the health benefits attributable to the intake of these bioactive food ingredients. Studies focusing on changes during the storage conditions, digestion process, intestinal absorption rates, biological mechanisms of action, or bioactivity of their metabolites are also required to establish the real contribution of these compounds to the health status of today’s societies

Keywords

phytochemicals --- antioxidant --- antinausea --- antiobesity --- anticancer --- anti-inflammatory --- ‘Cara Cara’ juice --- storage --- hydrophilic and lipophilic antioxidant --- carotenoid --- flavonoid --- degradation --- dried distilled spent grain (DDSG) --- melanoidins --- content --- structure --- antioxidant activity --- ACE-inhibitory activity --- beverages --- brewing method --- antioxidant potential --- total polyphenols content --- mineral composition --- grape stem --- phenolic compounds --- central composite rotatable design --- sustainable food systems --- pressurized liquid extraction --- side streams valorisation --- curcumin --- milk proteins --- nanoparticles --- antimicrobial activities --- bioactive peptides --- hypertension --- functional food --- metabolic syndrome --- microbiota --- insulin sensitivity --- polyphenols --- grape pomace --- donkey milk (DM) --- donkey colostrum (DC) --- mammal’s milk --- cow’s milk protein allergy (CMPA) --- biologic activity --- immunosenescence --- health benefits --- cryoconcentration --- calafate juice --- storage time --- physicochemical properties --- bioactive compounds --- sensorial analysis --- apitherapy --- royal jelly --- propolis --- bee pollen --- sarcopenia --- dietary interventions --- muscle --- skeletal --- muscle wasting --- physical performance --- coronavirus disease 2019 --- COVID-19 --- body composition --- lean body mass --- insulin resistance --- mitochondrial dysfunction --- satellite stem cells --- polysaccharide purification --- anti-obesity --- proliferation --- PPARγ --- biological activities --- isolation --- analysis --- mechanism of action --- bioaccessibility --- intestinal absorption --- bioavailability


Book
Functional Natural-Based Polymers
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Natural polymers are already used for a variety of biomedical applications, including drug delivery, wound healing, tissue engineering, biosensors, etc. However, they have also found other applications, for example, in the food industry, the pharmaceutical industry, as firefighting materials, water purification, etc. Different polysaccharide and protein-based systems have been developed. They each have their properties that render them useful for certain applications such as the water solubility of alginate, the thermo-sensitivity of chitosan, the abundance of cellulose and starch, or the cell adhesion and proliferation of gelatin and collagen. This Special Issue will explore the design, synthesis, processing, characterization, and applications of new functional natural-based polymers.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- light conversion film --- cellulose acetate --- europium --- sensitization --- X-ray photoelectron spectroscopy --- surface plasmon resonance --- thin film --- quantum dot --- 4-(2-pyridylazo)resorcinol --- chitosan --- graphene oxide --- 3D printing --- carboxymethyl cellulose --- hydrogel --- lyophilization --- dissolution --- release model --- customization --- NO-donor --- topical release --- polymeric matrices --- microbial infections --- wound healing --- blood circulation --- semisynthetic polymers --- natural rubber --- rice husk ash --- alginate --- mechanical properties --- dielectric properties --- nanohydrogel --- food applications --- biopolymers --- polysaccharide --- neural network --- chicken feet --- sensorial quality --- food quality --- gelatine --- hyaluronic acid --- polyethylene oxide --- electrospinning --- nanofibers --- wound dressings --- pectin --- pectinase --- wheat bran --- banana peel --- Bacillus amyloliquefaciens --- prebiotics --- mucilage --- pectin polysaccharide --- Opuntia ficus-indica --- aloe vera --- acemannan --- Cactaceae --- Asphodelaceae --- porcine gastric mucin --- methacryloyl mucin --- double-cross-linked networks --- circular dichroism --- mechanical characterization --- date palm trunk mesh --- cellulose --- lignocellulosic waste --- alpha cellulose --- nanocellulose --- agro-byproduct --- Bacillus licheniformis --- bioconversion --- pomelo albedo --- sucrolytic --- lubricant --- tribology --- albumin deposition --- contact lens --- surface roughness --- bio-based polyurethanes --- prepolymers --- cellulose-derived polyol --- cellulose-citrate --- polyurethane composites --- poly(lactic acid) --- nanocomposites --- tannin --- lignin --- thermal degradation kinetics --- decomposition mechanism --- pyrolysis --- nanocomposite --- nanofertilizer --- slow release --- ammonia oxidase gene --- quantitative polymerase chain reaction --- microflora N cycle --- nutrient use efficiency --- soil N content --- aerogels --- cold plasma coating --- hydrophobization --- pore structure --- chitinous fishery wastes --- chitinase --- crab shells --- Paenibacillus --- N-acetyl-D-glucosamine --- phenol --- adhesive hydrogels --- nanomaterials --- surface modification --- latex --- lignocellulosic fibers --- conventional fillers --- CNC --- esterification reaction --- graft copolymerization --- hydrophobic modification --- flocculant --- crosslinking --- peptides --- glutaraldehyde --- specified risk materials --- laccase --- melanin --- decolorization --- natural mediators --- glycerol --- polymer electrolyte --- ionic conductivity --- biochemistry --- pH and rumen temperature --- protozoa --- zero valent iron --- nanoparticles --- ethylene glycol --- methylene blue --- polyhydroxyalkanoates --- poly(3-hydroxybutyrate-co-3-hydroxyhexanoate --- melt processing --- extrusion --- injection molding --- elongation at break --- crystallization --- DoE --- oil palm biomass waste --- anionic hydrogel --- swelling --- salt crosslinking agent --- CoNi nanocomposite --- cellulose paper --- antibacterial potential --- degradation --- annealing --- acetylation --- potato starch --- emulsion capacity --- FTIR --- Malva parviflora --- natural polymers --- physicochemical properties --- rheology --- birch wood --- pre-treatment --- process parameter --- lignocellulose --- 2-furaldehyde --- Komagataeibacter --- stretchable bacterial cellulose --- enhanced strain --- vitamin C --- collagen --- anisotropy --- electron irradiation --- tensile test --- activated carbon --- MnO2 --- Co NPs --- antibacterial activity --- hydrogels --- antimicrobial activities --- functionalized materials --- cellulose derivatives --- flexor tendon repair --- anti-inflammatory --- anti-adhesion --- antimicrobial --- polymer-based constructs --- biosorbent --- copper --- adsorption --- model studies --- aqueous medium --- biodegradable polymers --- chemical modification --- food packaging --- free radical polymerization --- superabsorbent --- water-retaining agent --- thermal properties --- Mimosa pudica mucilage --- extraction optimization --- Box-Behnken design --- response surface methodology --- pH-responsive on–off switching --- zero-order release --- antimicrobial activity --- bacterial cellulose --- cytotoxicity --- nisin --- stability


Book
Functional Natural-Based Polymers
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Natural polymers are already used for a variety of biomedical applications, including drug delivery, wound healing, tissue engineering, biosensors, etc. However, they have also found other applications, for example, in the food industry, the pharmaceutical industry, as firefighting materials, water purification, etc. Different polysaccharide and protein-based systems have been developed. They each have their properties that render them useful for certain applications such as the water solubility of alginate, the thermo-sensitivity of chitosan, the abundance of cellulose and starch, or the cell adhesion and proliferation of gelatin and collagen. This Special Issue will explore the design, synthesis, processing, characterization, and applications of new functional natural-based polymers.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- light conversion film --- cellulose acetate --- europium --- sensitization --- X-ray photoelectron spectroscopy --- surface plasmon resonance --- thin film --- quantum dot --- 4-(2-pyridylazo)resorcinol --- chitosan --- graphene oxide --- 3D printing --- carboxymethyl cellulose --- hydrogel --- lyophilization --- dissolution --- release model --- customization --- NO-donor --- topical release --- polymeric matrices --- microbial infections --- wound healing --- blood circulation --- semisynthetic polymers --- natural rubber --- rice husk ash --- alginate --- mechanical properties --- dielectric properties --- nanohydrogel --- food applications --- biopolymers --- polysaccharide --- neural network --- chicken feet --- sensorial quality --- food quality --- gelatine --- hyaluronic acid --- polyethylene oxide --- electrospinning --- nanofibers --- wound dressings --- pectin --- pectinase --- wheat bran --- banana peel --- Bacillus amyloliquefaciens --- prebiotics --- mucilage --- pectin polysaccharide --- Opuntia ficus-indica --- aloe vera --- acemannan --- Cactaceae --- Asphodelaceae --- porcine gastric mucin --- methacryloyl mucin --- double-cross-linked networks --- circular dichroism --- mechanical characterization --- date palm trunk mesh --- cellulose --- lignocellulosic waste --- alpha cellulose --- nanocellulose --- agro-byproduct --- Bacillus licheniformis --- bioconversion --- pomelo albedo --- sucrolytic --- lubricant --- tribology --- albumin deposition --- contact lens --- surface roughness --- bio-based polyurethanes --- prepolymers --- cellulose-derived polyol --- cellulose-citrate --- polyurethane composites --- poly(lactic acid) --- nanocomposites --- tannin --- lignin --- thermal degradation kinetics --- decomposition mechanism --- pyrolysis --- nanocomposite --- nanofertilizer --- slow release --- ammonia oxidase gene --- quantitative polymerase chain reaction --- microflora N cycle --- nutrient use efficiency --- soil N content --- aerogels --- cold plasma coating --- hydrophobization --- pore structure --- chitinous fishery wastes --- chitinase --- crab shells --- Paenibacillus --- N-acetyl-D-glucosamine --- phenol --- adhesive hydrogels --- nanomaterials --- surface modification --- latex --- lignocellulosic fibers --- conventional fillers --- CNC --- esterification reaction --- graft copolymerization --- hydrophobic modification --- flocculant --- crosslinking --- peptides --- glutaraldehyde --- specified risk materials --- laccase --- melanin --- decolorization --- natural mediators --- glycerol --- polymer electrolyte --- ionic conductivity --- biochemistry --- pH and rumen temperature --- protozoa --- zero valent iron --- nanoparticles --- ethylene glycol --- methylene blue --- polyhydroxyalkanoates --- poly(3-hydroxybutyrate-co-3-hydroxyhexanoate --- melt processing --- extrusion --- injection molding --- elongation at break --- crystallization --- DoE --- oil palm biomass waste --- anionic hydrogel --- swelling --- salt crosslinking agent --- CoNi nanocomposite --- cellulose paper --- antibacterial potential --- degradation --- annealing --- acetylation --- potato starch --- emulsion capacity --- FTIR --- Malva parviflora --- natural polymers --- physicochemical properties --- rheology --- birch wood --- pre-treatment --- process parameter --- lignocellulose --- 2-furaldehyde --- Komagataeibacter --- stretchable bacterial cellulose --- enhanced strain --- vitamin C --- collagen --- anisotropy --- electron irradiation --- tensile test --- activated carbon --- MnO2 --- Co NPs --- antibacterial activity --- hydrogels --- antimicrobial activities --- functionalized materials --- cellulose derivatives --- flexor tendon repair --- anti-inflammatory --- anti-adhesion --- antimicrobial --- polymer-based constructs --- biosorbent --- copper --- adsorption --- model studies --- aqueous medium --- biodegradable polymers --- chemical modification --- food packaging --- free radical polymerization --- superabsorbent --- water-retaining agent --- thermal properties --- Mimosa pudica mucilage --- extraction optimization --- Box-Behnken design --- response surface methodology --- pH-responsive on–off switching --- zero-order release --- antimicrobial activity --- bacterial cellulose --- cytotoxicity --- nisin --- stability


Book
Functional Natural-Based Polymers
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Natural polymers are already used for a variety of biomedical applications, including drug delivery, wound healing, tissue engineering, biosensors, etc. However, they have also found other applications, for example, in the food industry, the pharmaceutical industry, as firefighting materials, water purification, etc. Different polysaccharide and protein-based systems have been developed. They each have their properties that render them useful for certain applications such as the water solubility of alginate, the thermo-sensitivity of chitosan, the abundance of cellulose and starch, or the cell adhesion and proliferation of gelatin and collagen. This Special Issue will explore the design, synthesis, processing, characterization, and applications of new functional natural-based polymers.

Keywords

light conversion film --- cellulose acetate --- europium --- sensitization --- X-ray photoelectron spectroscopy --- surface plasmon resonance --- thin film --- quantum dot --- 4-(2-pyridylazo)resorcinol --- chitosan --- graphene oxide --- 3D printing --- carboxymethyl cellulose --- hydrogel --- lyophilization --- dissolution --- release model --- customization --- NO-donor --- topical release --- polymeric matrices --- microbial infections --- wound healing --- blood circulation --- semisynthetic polymers --- natural rubber --- rice husk ash --- alginate --- mechanical properties --- dielectric properties --- nanohydrogel --- food applications --- biopolymers --- polysaccharide --- neural network --- chicken feet --- sensorial quality --- food quality --- gelatine --- hyaluronic acid --- polyethylene oxide --- electrospinning --- nanofibers --- wound dressings --- pectin --- pectinase --- wheat bran --- banana peel --- Bacillus amyloliquefaciens --- prebiotics --- mucilage --- pectin polysaccharide --- Opuntia ficus-indica --- aloe vera --- acemannan --- Cactaceae --- Asphodelaceae --- porcine gastric mucin --- methacryloyl mucin --- double-cross-linked networks --- circular dichroism --- mechanical characterization --- date palm trunk mesh --- cellulose --- lignocellulosic waste --- alpha cellulose --- nanocellulose --- agro-byproduct --- Bacillus licheniformis --- bioconversion --- pomelo albedo --- sucrolytic --- lubricant --- tribology --- albumin deposition --- contact lens --- surface roughness --- bio-based polyurethanes --- prepolymers --- cellulose-derived polyol --- cellulose-citrate --- polyurethane composites --- poly(lactic acid) --- nanocomposites --- tannin --- lignin --- thermal degradation kinetics --- decomposition mechanism --- pyrolysis --- nanocomposite --- nanofertilizer --- slow release --- ammonia oxidase gene --- quantitative polymerase chain reaction --- microflora N cycle --- nutrient use efficiency --- soil N content --- aerogels --- cold plasma coating --- hydrophobization --- pore structure --- chitinous fishery wastes --- chitinase --- crab shells --- Paenibacillus --- N-acetyl-D-glucosamine --- phenol --- adhesive hydrogels --- nanomaterials --- surface modification --- latex --- lignocellulosic fibers --- conventional fillers --- CNC --- esterification reaction --- graft copolymerization --- hydrophobic modification --- flocculant --- crosslinking --- peptides --- glutaraldehyde --- specified risk materials --- laccase --- melanin --- decolorization --- natural mediators --- glycerol --- polymer electrolyte --- ionic conductivity --- biochemistry --- pH and rumen temperature --- protozoa --- zero valent iron --- nanoparticles --- ethylene glycol --- methylene blue --- polyhydroxyalkanoates --- poly(3-hydroxybutyrate-co-3-hydroxyhexanoate --- melt processing --- extrusion --- injection molding --- elongation at break --- crystallization --- DoE --- oil palm biomass waste --- anionic hydrogel --- swelling --- salt crosslinking agent --- CoNi nanocomposite --- cellulose paper --- antibacterial potential --- degradation --- annealing --- acetylation --- potato starch --- emulsion capacity --- FTIR --- Malva parviflora --- natural polymers --- physicochemical properties --- rheology --- birch wood --- pre-treatment --- process parameter --- lignocellulose --- 2-furaldehyde --- Komagataeibacter --- stretchable bacterial cellulose --- enhanced strain --- vitamin C --- collagen --- anisotropy --- electron irradiation --- tensile test --- activated carbon --- MnO2 --- Co NPs --- antibacterial activity --- hydrogels --- antimicrobial activities --- functionalized materials --- cellulose derivatives --- flexor tendon repair --- anti-inflammatory --- anti-adhesion --- antimicrobial --- polymer-based constructs --- biosorbent --- copper --- adsorption --- model studies --- aqueous medium --- biodegradable polymers --- chemical modification --- food packaging --- free radical polymerization --- superabsorbent --- water-retaining agent --- thermal properties --- Mimosa pudica mucilage --- extraction optimization --- Box-Behnken design --- response surface methodology --- pH-responsive on–off switching --- zero-order release --- antimicrobial activity --- bacterial cellulose --- cytotoxicity --- nisin --- stability

Listing 1 - 10 of 10
Sort by