Listing 1 - 6 of 6
Sort by

Book
Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures
Author:
ISBN: 3039287095 3039287087 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation ? on a hypergroup, some new properties of the

Symposium on infinite dimensional topology
Author:
ISBN: 0691080879 1400881404 9780691080871 Year: 1972 Volume: 69 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

In essence the proceedings of the 1967 meeting in Baton Rouge, the volume offers significant papers in the topology of infinite dimensional linear spaces, fixed point theory in infinite dimensional spaces, infinite dimensional differential topology, and infinite dimensional pointset topology. Later results of the contributors underscore the basic soundness of this selection, which includes survey and expository papers, as well as reports of continuing research.

Keywords

Topology --- Differential geometry. Global analysis --- Differential topology --- Functional analysis --- Congresses --- Analyse fonctionnnelle --- Geometry, Differential --- Anderson's theorem. --- Annihilator (ring theory). --- Automorphism. --- Baire measure. --- Banach algebra. --- Banach manifold. --- Banach space. --- Bounded operator. --- Cartesian product. --- Characterization (mathematics). --- Cohomology. --- Compact space. --- Complement (set theory). --- Complete metric space. --- Connected space. --- Continuous function. --- Convex set. --- Coset. --- Critical point (mathematics). --- Diagram (category theory). --- Differentiable manifold. --- Differential topology. --- Dimension (vector space). --- Dimension. --- Dimensional analysis. --- Dual space. --- Duality (mathematics). --- Endomorphism. --- Equivalence class. --- Euclidean space. --- Existential quantification. --- Explicit formulae (L-function). --- Exponential map (Riemannian geometry). --- Fixed-point theorem. --- Fréchet derivative. --- Fréchet space. --- Fuchsian group. --- Function space. --- Fundamental class. --- Haar measure. --- Hessian matrix. --- Hilbert space. --- Homeomorphism. --- Homology (mathematics). --- Homotopy group. --- Homotopy. --- Inclusion map. --- Infimum and supremum. --- Lebesgue space. --- Lefschetz fixed-point theorem. --- Limit point. --- Linear space (geometry). --- Locally convex topological vector space. --- Loop space. --- Mathematical optimization. --- Measure (mathematics). --- Metric space. --- Module (mathematics). --- Natural topology. --- Neighbourhood (mathematics). --- Normal space. --- Normed vector space. --- Open set. --- Ordinal number. --- Paracompact space. --- Partition of unity. --- Path space. --- Product topology. --- Quantifier (logic). --- Quotient space (linear algebra). --- Quotient space (topology). --- Radon measure. --- Reflexive space. --- Representation theorem. --- Riemannian manifold. --- Schauder fixed point theorem. --- Sign (mathematics). --- Simply connected space. --- Space form. --- Special case. --- Stiefel manifold. --- Strong operator topology. --- Subcategory. --- Submanifold. --- Subset. --- Tangent space. --- Teichmüller space. --- Theorem. --- Topological space. --- Topological vector space. --- Topology. --- Transfinite induction. --- Transfinite. --- Transversal (geometry). --- Transversality theorem. --- Tychonoff cube. --- Union (set theory). --- Unit sphere. --- Weak topology. --- Weakly compact. --- Differential topology - Congresses --- Functional analysis - Congresses --- Topology - Congresses --- Analyse fonctionnelle.

D-Modules and Spherical Representations. (MN-39)
Author:
ISBN: 1400862078 9781400862078 0691025177 9780691608327 9780691025179 0691025177 0691608326 9780691608327 Year: 2014 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory of D-modules deals with the algebraic aspects of differential equations. These are particularly interesting on homogeneous manifolds, since the infinitesimal action of a Lie algebra consists of differential operators. Hence, it is possible to attach geometric invariants, like the support and the characteristic variety, to representations of Lie groups. By considering D-modules on flag varieties, one obtains a simple classification of all irreducible admissible representations of reductive Lie groups. On the other hand, it is natural to study the representations realized by functions on pseudo-Riemannian symmetric spaces, i.e., spherical representations. The problem is then to describe the spherical representations among all irreducible ones, and to compute their multiplicities. This is the goal of this work, achieved fairly completely at least for the discrete series representations of reductive symmetric spaces. The book provides a general introduction to the theory of D-modules on flag varieties, and it describes spherical D-modules in terms of a cohomological formula. Using microlocalization of representations, the author derives a criterion for irreducibility. The relation between multiplicities and singularities is also discussed at length.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Differentiable manifolds. --- D-modules. --- Representations of groups. --- Lie groups. --- Groups, Lie --- Lie algebras --- Symmetric spaces --- Topological groups --- Group representation (Mathematics) --- Groups, Representation theory of --- Group theory --- Modules (Algebra) --- Differential manifolds --- Manifolds (Mathematics) --- Affine space. --- Algebraic cycle. --- Algebraic element. --- Analytic function. --- Annihilator (ring theory). --- Automorphism. --- Banach space. --- Base change. --- Big O notation. --- Bijection. --- Bilinear form. --- Borel subgroup. --- Cartan subalgebra. --- Cofibration. --- Cohomology. --- Commutative diagram. --- Commutative property. --- Commutator subgroup. --- Complexification (Lie group). --- Conjugacy class. --- Coproduct. --- Coset. --- Cotangent space. --- D-module. --- Derived category. --- Diagram (category theory). --- Differential operator. --- Dimension (vector space). --- Direct image functor. --- Discrete series representation. --- Disk (mathematics). --- Dot product. --- Double coset. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Endomorphism. --- Euler operator. --- Existential quantification. --- Fibration. --- Function space. --- Functor. --- G-module. --- Gelfand pair. --- Generic point. --- Hilbert space. --- Holomorphic function. --- Homomorphism. --- Hyperfunction. --- Ideal (ring theory). --- Infinitesimal character. --- Inner automorphism. --- Invertible sheaf. --- Irreducibility (mathematics). --- Irreducible representation. --- Levi decomposition. --- Lie algebra. --- Line bundle. --- Linear algebraic group. --- Linear space (geometry). --- Manifold. --- Maximal compact subgroup. --- Maximal torus. --- Metric space. --- Module (mathematics). --- Moment map. --- Morphism. --- Noetherian ring. --- Open set. --- Presheaf (category theory). --- Principal series representation. --- Projective line. --- Projective object. --- Projective space. --- Projective variety. --- Reductive group. --- Riemannian geometry. --- Riemann–Hilbert correspondence. --- Right inverse. --- Ring (mathematics). --- Root system. --- Satake diagram. --- Sheaf (mathematics). --- Sheaf of modules. --- Special case. --- Sphere. --- Square-integrable function. --- Sub"ient. --- Subalgebra. --- Subcategory. --- Subgroup. --- Summation. --- Surjective function. --- Symmetric space. --- Symplectic geometry. --- Tensor product. --- Theorem. --- Triangular matrix. --- Vector bundle. --- Volume form. --- Weyl group.


Book
Dimension Theory (PMS-4), Volume 4
Authors: ---
ISBN: 0691653682 1400875668 9781400875665 9780691079479 9780691627748 0691627746 9780691627748 Year: 2015 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

Book 4 in the Princeton Mathematical Series.Originally published in 1941.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Topology. --- Analysis situs --- Position analysis --- Rubber-sheet geometry --- Geometry --- Polyhedra --- Set theory --- Algebras, Linear --- Abelian group. --- Additive group. --- Adjunction (field theory). --- Algebraic connectivity. --- Algebraic number. --- Annihilator (ring theory). --- Automorphism. --- Barycentric coordinate system. --- Barycentric subdivision. --- Big O notation. --- Boundary (topology). --- Cantor set. --- Cardinal number. --- Cartesian coordinate system. --- Cauchy sequence. --- Character group. --- Circumference. --- Cohomology. --- Combinatorics. --- Compact space. --- Complete metric space. --- Complex number. --- Computation. --- Continuous function (set theory). --- Continuous function. --- Contractible space. --- Cyclic group. --- Dense set. --- Diameter. --- Dimension (vector space). --- Dimension function. --- Dimension theory (algebra). --- Dimension. --- Dimensional analysis. --- Discrete group. --- Disjoint sets. --- Domain of a function. --- Equation. --- Euclidean space. --- Existential quantification. --- Exponentiation. --- Function (mathematics). --- Function space. --- Fundamental theorem. --- Geometry. --- Group theory. --- Hausdorff dimension. --- Hausdorff space. --- Hilbert cube. --- Hilbert space. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Homotopy. --- Hyperplane. --- Integer. --- Interior (topology). --- Invariance of domain. --- Inverse system. --- Linear space (geometry). --- Linear subspace. --- Lp space. --- Mathematical induction. --- Mathematics. --- Metric space. --- Multiplicative group. --- N-sphere. --- Natural number. --- Natural transformation. --- Ordinal number. --- Orientability. --- Parity (mathematics). --- Partial function. --- Partially ordered set. --- Point (geometry). --- Polytope. --- Projection (linear algebra). --- Samuel Eilenberg. --- Separable space. --- Separated sets. --- Set (mathematics). --- Set theory. --- Sign (mathematics). --- Simplex. --- Special case. --- Subgroup. --- Subsequence. --- Subset. --- Summation. --- Theorem. --- Three-dimensional space (mathematics). --- Topological group. --- Topological property. --- Topological space. --- Transfinite. --- Transitive relation. --- Unit sphere. --- Upper and lower bounds. --- Variable (mathematics).


Book
La grande guerre pour la civilisation : l'Occident à la conquête du Moyen-Orient (1979-2005).
Authors: ---
ISBN: 2707145734 9782707145734 Year: 2005 Publisher: Paris La découverte

Loading...
Export citation

Choose an application

Bookmark

Abstract

Depuis les années 1970, l’histoire du Moyen-Orient se confond presque avec celle de ses guerres et de ses conflits : guerre soviétique en Afghanistan (1979-1989), guerre Iran-Irak (1980-1988), guerre du Liban (1975-1991), guerre du Golfe (1991), guerres américaines en Afghanistan (2001) et en Irak (2003), sans oublier l’interminable conflit israélo-palestinien... Mêlant récits, enquêtes, dialogues avec les acteurs – dirigeants et anonymes –, analyses et souvenirs personnels, Robert Fisk retrace l’épopée tragique du Moyen-Orient, à travers la chronique détaillée de ses sanglants épisodes.

Keywords

War and society --- Middle East --- United States --- History, Military --- Colonization --- Relations --- BPB0601 --- 956.9 --- 341.31 --- Geschiedenis van het Nabije Oosten --- Oorlogstoestand. Staat van oorlog. Oorlogsverklaring --- 341.31 Oorlogstoestand. Staat van oorlog. Oorlogsverklaring --- 956.9 Geschiedenis van het Nabije Oosten --- 936 --- terrorisme --- guerres du Golfe --- politique mondiale --- journalisme de guerre --- hedendaagse wereld na 1945 --- temps contemporains après 1945 --- War and society - Middle East --- Middle East - History, Military - 20th century --- Middle East - History, Military - 21st century --- Middle East - Colonization --- United States - Relations - Middle East --- Middle East - Relations - United States --- Oussama ben Laden --- Soudan --- le régime islamique de Khartoum --- Afghanistan --- Jalalabad --- les Taliban --- Al-Qaïda --- la Russie --- l'Armée rouge en Afghanistan --- Babrak Karmal --- la résistance afghane --- Kandahar --- Peshawar --- Pakistan --- les moudjahidines --- Sorkh Rud --- la guerre sainte --- la CIA --- rébellion --- identité religieuse --- le Kremlin --- les services secrets britanniques --- Angleterre --- Etats-Unis --- coup d'état contre Mossadegh --- démocratie --- laïcité --- l'Iran --- dictature --- le Shah --- la Savak --- révolution islamique de 1979 --- ayatollah Khomeiny --- la répression politique dans l'Iran postrévolutionnaire --- la guerre --- la conquête de Bassora --- Irak --- chiisme --- Saddam Hussein --- Bagdad --- extrémisme islamique iranien --- la guerre Iran-Irak --- la communauté internationale --- les Kurdes d'Halabja --- la frégate américaine Stark --- le golfe Persique --- Irangate --- la péninsule de Fao --- Iran Air --- l'USS Vincennes --- Bill Fisk --- les effets de la Grande Guerre sur la carte du Moyen-Orient --- Syrie --- Liban --- Israël --- les Arméniens --- génocide au Liban --- Turquie --- la France --- le Grand Mufti Amin al-Husseini --- Palestine --- l'Allemagne nazie --- le conflit israélo-palestinien --- le terrorisme --- Yasser Arafat --- les accords d'Oslo --- OLP --- la colonisation israélienne et la violence palestinienne --- Amira Hass --- la seconde Initifada --- Abdoul-Aziz al-Rantissi --- Hamas --- Gaza --- le Koweït --- la seconde guerre du Golfe --- le roi Fahd --- Arabie Saoudite --- opération humanitaire 'Provide comfort' --- le 'nouvel ordre mondial' --- opération 'Tempête du désert' --- catastrophe humanitaire en Irak --- l'ONU --- la Grande Bretagne --- épidémie de cancers --- les munitions à uranium --- 11 septembre 2001 --- guerre contre le terrorisme --- la guerre de Suez --- Egypte --- Atomic Dog --- Annihilator --- Anthrax --- Agamemnon --- propagande --- islam

Unitary representations of reductive Lie groups.
Author:
ISBN: 0691084815 0691084823 1400882389 9780691084824 9780691084817 Year: 1987 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations.

Keywords

Lie groups --- Representations of Lie groups --- Lie groups. --- Representations of Lie groups. --- 512.81 --- Groups, Lie --- Lie algebras --- Symmetric spaces --- Topological groups --- 512.81 Lie groups --- Abelian group. --- Adjoint representation. --- Annihilator (ring theory). --- Atiyah–Singer index theorem. --- Automorphic form. --- Automorphism. --- Cartan subgroup. --- Circle group. --- Class function (algebra). --- Classification theorem. --- Cohomology. --- Commutator subgroup. --- Complete metric space. --- Complex manifold. --- Conjugacy class. --- Cotangent space. --- Dimension (vector space). --- Discrete series representation. --- Dixmier conjecture. --- Dolbeault cohomology. --- Duality (mathematics). --- Eigenvalues and eigenvectors. --- Exponential map (Lie theory). --- Exponential map (Riemannian geometry). --- Exterior algebra. --- Function space. --- Group homomorphism. --- Harmonic analysis. --- Hecke algebra. --- Hilbert space. --- Hodge theory. --- Holomorphic function. --- Holomorphic vector bundle. --- Homogeneous space. --- Homomorphism. --- Induced representation. --- Infinitesimal character. --- Inner automorphism. --- Invariant subspace. --- Irreducibility (mathematics). --- Irreducible representation. --- Isometry group. --- Isometry. --- K-finite. --- Kazhdan–Lusztig polynomial. --- Langlands decomposition. --- Lie algebra cohomology. --- Lie algebra representation. --- Lie algebra. --- Lie group action. --- Lie group. --- Mathematical induction. --- Maximal compact subgroup. --- Measure (mathematics). --- Minkowski space. --- Nilpotent group. --- Orbit method. --- Orthogonal group. --- Parabolic induction. --- Principal homogeneous space. --- Principal series representation. --- Projective space. --- Pseudo-Riemannian manifold. --- Pullback (category theory). --- Ramanujan–Petersson conjecture. --- Reductive group. --- Regularity theorem. --- Representation of a Lie group. --- Representation theorem. --- Representation theory. --- Riemann sphere. --- Riemannian manifold. --- Schwartz space. --- Semisimple Lie algebra. --- Sheaf (mathematics). --- Sign (mathematics). --- Special case. --- Spectral theory. --- Sub"ient. --- Subgroup. --- Support (mathematics). --- Symplectic geometry. --- Symplectic group. --- Symplectic vector space. --- Tangent space. --- Tautological bundle. --- Theorem. --- Topological group. --- Topological space. --- Trivial representation. --- Unitary group. --- Unitary matrix. --- Unitary representation. --- Universal enveloping algebra. --- Vector bundle. --- Weyl algebra. --- Weyl character formula. --- Weyl group. --- Zariski's main theorem. --- Zonal spherical function. --- Représentations de groupes de Lie --- Groupes de lie --- Representation des groupes de lie

Listing 1 - 6 of 6
Sort by