Listing 1 - 10 of 113 | << page >> |
Sort by
|
Choose an application
Anaerobic digestion (AD) is a naturally-occurring biological process in soils, sediments, ruminants, and several other anoxic environments, that cycles carbon and other nutrients, and converts organic matter into a methane-rich gas. As a biotechnology, AD is now well-established for the treatment of the organic fraction of various waste materials, including wastewaters, but is also increasingly applied for an expanding range of organic feedstocks suitable for biological conversion to biogas. AD applications are classified in various ways, including on the basis of bioreactor design; and operating parameters, such as retention time, temperature, pH, total solids (TS) and volatile solids (VS) contents, and biodegradability of substrates. AD is an attractive bioenergy and waste / wastewater treatment technology. The advantages of AD for waste treatment include: production of a useable fuel (biogas/methane); possibility of high organic loading; reduced carbon footprint; and suitability for integration into a wide variety of process configurations and scales. Specifically, two important, and developing, applications exemplify the potential of AD technologies: (1) the integration of AD as the basis of the core technologies underpinning municipal wastewater, and sewage, treatment, to displace less sustainable, and more energy-intensive, aerobic biological treatment systems in urban water infrastructures; and (2) technical innovations for higher-rate conversions of high-solids wastestreams, and feedstocks, for the production of energy carriers (i.e. methane-biogas, but possibly also biohydrogen) and other industrially-relevant intermediates, such as organic acids. Internationally, the research effort to maximize AD biogas yield has increased ten-fold over the past decade. Depending on the feedstocks, bioreactor design and process parameters, fundamental and applied knowledge are still required to improve conversion rates and biogas yields. This Research Topic cover aspects related to AD processes, such as the effect of feedstock composition, as well as the effect of feedstock pre-treatment, bioreactor design and operating modes, on process efficiency; microbial community dynamics and systems biology; influence of macro- and micro-nutrient concentrations and availability; process control; upgrading and calibration of anaerobic digestion models (e.g. ADM1) considering the biochemical routes as well as the hydrodynamics in such ecosystems; and novel approaches to process monitoring, such as the development, and application, of novel, and rapid diagnostic assays, including those based on molecular microbiology. Detailed full-scale application studies were also particularly welcomed.
Wastewater treatment technology --- Anaerobic digestion (AD)
Choose an application
Anaerobic digestion (AD) is a naturally-occurring biological process in soils, sediments, ruminants, and several other anoxic environments, that cycles carbon and other nutrients, and converts organic matter into a methane-rich gas. As a biotechnology, AD is now well-established for the treatment of the organic fraction of various waste materials, including wastewaters, but is also increasingly applied for an expanding range of organic feedstocks suitable for biological conversion to biogas. AD applications are classified in various ways, including on the basis of bioreactor design; and operating parameters, such as retention time, temperature, pH, total solids (TS) and volatile solids (VS) contents, and biodegradability of substrates. AD is an attractive bioenergy and waste / wastewater treatment technology. The advantages of AD for waste treatment include: production of a useable fuel (biogas/methane); possibility of high organic loading; reduced carbon footprint; and suitability for integration into a wide variety of process configurations and scales. Specifically, two important, and developing, applications exemplify the potential of AD technologies: (1) the integration of AD as the basis of the core technologies underpinning municipal wastewater, and sewage, treatment, to displace less sustainable, and more energy-intensive, aerobic biological treatment systems in urban water infrastructures; and (2) technical innovations for higher-rate conversions of high-solids wastestreams, and feedstocks, for the production of energy carriers (i.e. methane-biogas, but possibly also biohydrogen) and other industrially-relevant intermediates, such as organic acids. Internationally, the research effort to maximize AD biogas yield has increased ten-fold over the past decade. Depending on the feedstocks, bioreactor design and process parameters, fundamental and applied knowledge are still required to improve conversion rates and biogas yields. This Research Topic cover aspects related to AD processes, such as the effect of feedstock composition, as well as the effect of feedstock pre-treatment, bioreactor design and operating modes, on process efficiency; microbial community dynamics and systems biology; influence of macro- and micro-nutrient concentrations and availability; process control; upgrading and calibration of anaerobic digestion models (e.g. ADM1) considering the biochemical routes as well as the hydrodynamics in such ecosystems; and novel approaches to process monitoring, such as the development, and application, of novel, and rapid diagnostic assays, including those based on molecular microbiology. Detailed full-scale application studies were also particularly welcomed.
Wastewater treatment technology --- Anaerobic digestion (AD)
Choose an application
Anaerobic digestion (AD) is a naturally-occurring biological process in soils, sediments, ruminants, and several other anoxic environments, that cycles carbon and other nutrients, and converts organic matter into a methane-rich gas. As a biotechnology, AD is now well-established for the treatment of the organic fraction of various waste materials, including wastewaters, but is also increasingly applied for an expanding range of organic feedstocks suitable for biological conversion to biogas. AD applications are classified in various ways, including on the basis of bioreactor design; and operating parameters, such as retention time, temperature, pH, total solids (TS) and volatile solids (VS) contents, and biodegradability of substrates. AD is an attractive bioenergy and waste / wastewater treatment technology. The advantages of AD for waste treatment include: production of a useable fuel (biogas/methane); possibility of high organic loading; reduced carbon footprint; and suitability for integration into a wide variety of process configurations and scales. Specifically, two important, and developing, applications exemplify the potential of AD technologies: (1) the integration of AD as the basis of the core technologies underpinning municipal wastewater, and sewage, treatment, to displace less sustainable, and more energy-intensive, aerobic biological treatment systems in urban water infrastructures; and (2) technical innovations for higher-rate conversions of high-solids wastestreams, and feedstocks, for the production of energy carriers (i.e. methane-biogas, but possibly also biohydrogen) and other industrially-relevant intermediates, such as organic acids. Internationally, the research effort to maximize AD biogas yield has increased ten-fold over the past decade. Depending on the feedstocks, bioreactor design and process parameters, fundamental and applied knowledge are still required to improve conversion rates and biogas yields. This Research Topic cover aspects related to AD processes, such as the effect of feedstock composition, as well as the effect of feedstock pre-treatment, bioreactor design and operating modes, on process efficiency; microbial community dynamics and systems biology; influence of macro- and micro-nutrient concentrations and availability; process control; upgrading and calibration of anaerobic digestion models (e.g. ADM1) considering the biochemical routes as well as the hydrodynamics in such ecosystems; and novel approaches to process monitoring, such as the development, and application, of novel, and rapid diagnostic assays, including those based on molecular microbiology. Detailed full-scale application studies were also particularly welcomed.
Wastewater treatment technology --- Anaerobic digestion (AD)
Choose an application
Propionic acid is an important intermediate produced during anaerobic degradation of biowaste and a precursor of a large amount of methane. Its accumulation during biomethanation is however a common problem resulting in stagnation phases in biogas production. During this study, the deeper insight into the process of propionic acid degradation was intended by using modern analytical chemistry, standard microbiological approach and molecular biology for describing and explaining the problem.
Syntrophy --- Interspecies distance --- Anaerob --- Biomüllvergärung --- Propionsäure --- Propionic acid --- Syntrophie --- Anaerobic digestion
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Technology, engineering, agriculture --- Organic residues --- Livestock manure --- Manure management --- Anaerobic digestion --- Digestate --- Circular economy
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Organic residues --- Livestock manure --- Manure management --- Anaerobic digestion --- Digestate --- Circular economy
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Technology, engineering, agriculture --- Organic residues --- Livestock manure --- Manure management --- Anaerobic digestion --- Digestate --- Circular economy
Choose an application
Choose an application
Anaerobic digestion is used for industrial or domestic purposes to manage waste and/or to produce fuels. Anaerobic digestion are the group of processes by which microorganisms break down biodegradable material in the absence of oxygen. In this book, the authors present current research in the study of the types, processes and environmental impact of anaerobic digestion. Topics include the development and application of anaerobic digestion to treat husbandry and industrial wastewater in the Mekong Delta of Vietnam; anaerobic digestion of agricultural waste; evaluation of decentralized anaerobic
Choose an application
Anaerobic digestion of the organic fraction of municipal solid waste as such or together with food waste, press water or patatoes sludge was investigated to equilibrate methane production within a day or over the weekend, when no OFMSW was available. A stable co-digestion process could be achieved with COD degradation between 60 and 80 %. The max. organic loading rates were 28 kg COD/L,d. For stable methane production the OLR during Co-digestion should not excede 22,5 kg/L,d.
Food waste --- Potatoes sludge --- Organic fraction of municipal solid waste --- Methane production --- Anaerobic digestion --- Co-digestion --- Press water
Listing 1 - 10 of 113 | << page >> |
Sort by
|