Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Choose an application
Ammonium phosphate --- Waste spills --- Environmental aspects
Choose an application
Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.
History of engineering & technology --- calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings
Choose an application
Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.
calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings
Choose an application
Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.
History of engineering & technology --- calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings --- calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings
Listing 1 - 5 of 5 |
Sort by
|