Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Amidases --- Endoglycosidases --- Glycolipids --- Glycoproteins --- Metabolism --- Amidases. --- Endoglycosidases. --- Metabolism.
Choose an application
Ce mémoire de fin d’étude s’est intéressé à l’amidase AmiC qui est une hydrolase participant à la dégradation du peptidoglycane septal lors de la division d’E. coli. Plus précisément, ce mémoire s’interroge sur le domaine AMIN de cette amidase. Ce domaine a été identifié pour être indispensable à la localisation d’AmiC au site de division. De plus, in vitro, le domaine AMIN interagit avec le peptidoglycane. Cette observation permet d’envisager que, par l’interaction avec le peptidoglycane, le domaine AMIN permet la localisation d’AmiC au site de division. Cependant, les résidus responsables de l’interaction ne sont pas connus. Lors d’une première étude d’interaction du domaine AMIN avec le peptidoglycane, les résidus impliqués dans cette interaction ont été identifiés et vérifiés par modélisation. Ces derniers ainsi que les résidus conservés des deux feuillets beta ont été modifiés par mutagenèse dirigée. Dès lors, la première partie de ce mémoire était de finaliser une construction permettant la production de la protéine de fusion AMIN-sfGFP pour visualiser la localisation du domaine AMIN in vivo au microscope à fluorescence. Après l’obtention de la construction contenant le domaine AMIN sauvage et vérification de l’expression de celle-ci, les domaines AMIN mutés sont également introduits dans ce plasmide. En tout, 21 constructions sont obtenues. Elles doivent très prochainement permettre de déterminer la localisation, par microscopie à fluorescence, des mutants dans la bactérie en comparaison avec la protéine sauvage. La deuxième partie de ce mémoire a été de mettre au point les conditions de production de la protéine AmiC en milieu minimum, de la purifier et de cliver l’étiquette polyhistidine en vue de la préparation de la protéine marquée au 15N pour une étude par RMN de l’interaction d’AmiC avec le peptidoglycane. AmiC contient une étiquette polyhistidine qui ne doit plus être présente dans les échantillons. Dès lors, la protéase TEV, reconnaissant le site de clivage situé après la queue polyhistidine d’AmiC, est fraîchement produite et permet d’obtenir un meilleur rendement d’AmiC sans la queue polyhistidine. Le fait de produire AmiC en milieu minimum induit la surexpression de l’anhydrase carbonique qui se lie à la colonne de nickel et contamine les échantillons. L’utilisation d’une échangeuse de cation a permis d’éliminer l’anhydrase carbonique des échantillons. Lors du passage d’AmiC (dont l’étiquette polyhistidine a été clivée par la TEV) sur une colonne de nickel, une concentration de 25 mM en imidazole a été nécessaire pour récolter plus facilement AmiC. L’optimisation finale de la purification d’AmiC non marquée consistait à la produire dans 2 litres de milieu minimum et de purifier l’échantillon sur une colonne de nickel. Ensuite de passer les échantillons contenant His6-AmiC sur une colonne échangeuse de cation pour éliminer l’anhydrase carbonique et de terminer par un deuxième passage sur une colonne de nickel en présence de 25 mM d’imidazole après clivage avec de la TEV fraiche, afin de récolter AmiC pur et sans étiquette polyhistidine. Une production d’AmiC dans 2 litres de milieu minimum marqué au 15N a été également réalisée et est en attente de purification. Le peptidoglycane est, quant à lui, produit et purifié à une concentration de 500 mg/mL (2 ml au total) et doit être solubilisé pour l’étude en RMN.
Amidases --- AmiC --- AMIN --- Peptidoglycane --- Divisome --- Localisation --- Sciences du vivant > Biochimie, biophysique & biologie moléculaire
Choose an application
-I. Ojima • E. S. Zuniga • J. D. Seitz Advances in the Use of Enantiopure β-Lactams for the Synthesis of Biologically Active Compounds of Medicinal Interests -I. Fernández • M. A. Sierra β -Lactams from Fischer Carbene Complexes: Scope, Limitations, and Reaction Mechanism -B. Mandal • B. Basu Synthesis of β-Lactams Through Alkyne–Nitrone Cycloadditions 5 -T. T. Tidwell Preparation of Bis-β-Lactams by Ketene–Imine Cycloadditions -E: Turos The Chemistry and Biology of N-Thiolated β -Lactams -I. Banik • B. K. Banik Synthesis of β-Lactams and Their Chemical Manipulations Via Microwave-Induced Reactions.
Beta lactamases --- Chemistry --- Human Anatomy & Physiology --- Physical Sciences & Mathematics --- Health & Biological Sciences --- Biochemistry --- Animal Biochemistry --- Beta lactamases. --- Hydrolases. --- Hydrolytic enzymes --- Cephalosporinase --- Lactamases, Beta --- Penicillinase --- Chemistry. --- Pharmacy. --- Cancer research. --- Organic chemistry. --- Medicinal chemistry. --- Organic Chemistry. --- Medicinal Chemistry. --- Cancer Research. --- Enzymes --- Amidases --- Microbial enzymes --- Chemistry, Organic. --- Biochemistry. --- Oncology. --- Tumors --- Medicine --- Drugs --- Materia medica --- Pharmacology --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Biology --- Medical sciences --- Organic chemistry --- Composition --- Cancer research --- Chemistry, Medical and pharmaceutical --- Chemistry, Pharmaceutical --- Drug chemistry --- Medical chemistry --- Medicinal chemistry --- Pharmacochemistry
Choose an application
This book presents an essential overview of beta-lactams and their medicinal value and use in the preparation of other biologically active compounds. Written by internationally respected authors, the individual chapters explore beta-lactams’ synthesis, their mechanism of formation, biological effects, and function as base materials for other heterocycles of major importance.
Chemistry. --- Pharmacy. --- Cancer research. --- Drug resistance. --- Organic chemistry. --- Medicinal chemistry. --- Organic Chemistry. --- Drug Resistance. --- Medicinal Chemistry. --- Cancer Research. --- Beta lactamases. --- Cephalosporinase --- Lactamases, Beta --- Penicillinase --- Amidases --- Microbial enzymes --- Chemistry, Organic. --- Drug interactions. --- Biochemistry. --- Oncology. --- Interactions, Drug --- Drugs --- Organic chemistry --- Chemistry --- Tumors --- Medicine --- Materia medica --- Pharmacology --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Biology --- Medical sciences --- Side effects --- Composition --- Cancer research --- Chemistry, Medical and pharmaceutical --- Chemistry, Pharmaceutical --- Drug chemistry --- Medical chemistry --- Medicinal chemistry --- Pharmacochemistry --- Resistance to drugs
Choose an application
The recent discoveries that established histone acetylation as a key regulatory mechanism for gene expression triggered a wave of interest in histone posttranslational modifications and led to the development of novel anticancer agents now in clinical trials. In Histone Deacetylases: Transcriptional Regulation and Other Cellular Functions, a panel of leading investigators summarizes and synthesizes the new discoveries in this rapidly evolving field. The authors describe what has been learned about these proteins, including the identification of the enzymes, the elucidation of the enzymatic mechanisms of action, and the identification of their substrates and their partners. They also review the structures that have been solved for a number of enzymes-both alone and in complex with small-molecule inhibitors-and the biological roles of the several histone deacetylase (HDAC) genes that have been knocked out in mice. Authoritative and state-of-the-art, Histone Deacetylases: Transcriptional Regulation and Other Cellular Functions constitutes a first landmark of what has been accomplished so far and sets a clear agenda for the full definition of HDAC roles in biology and disease in the years to come.
Histone Deacetylases --- Cell Cycle --- Enzyme Repression --- Neoplasms --- Sirtuins --- Histone deacetylase. --- Cell cycle. --- Enzymes. --- Cancer --- Histone désacétylase --- Cycle cellulaire --- Enzymes --- physiology. --- drug effects. --- antagonists & inhibitors. --- drug therapy. --- Chemotherapy. --- Chimiothérapie --- Cancer -- Chemotherapy. --- Histone deacetylase --- Cell cycle --- Cell Physiological Processes --- Gene Expression Regulation, Enzymologic --- Enzyme Inhibitors --- ADP Ribose Transferases --- Amidohydrolases --- Group III Histone Deacetylases --- Biological Science Disciplines --- Intracellular Signaling Peptides and Proteins --- Diseases --- Therapeutics --- Analytical, Diagnostic and Therapeutic Techniques and Equipment --- Natural Science Disciplines --- Molecular Mechanisms of Pharmacological Action --- Pentosyltransferases --- Proteins --- Gene Expression Regulation --- Cell Physiological Phenomena --- Hydrolases --- Disciplines and Occupations --- Glycosyltransferases --- Amino Acids, Peptides, and Proteins --- Pharmacologic Actions --- Phenomena and Processes --- Genetic Processes --- Transferases --- Chemical Actions and Uses --- Enzymes and Coenzymes --- Genetic Phenomena --- Chemicals and Drugs --- Drug Therapy --- Histone Deacetylase Inhibitors --- Physiology --- Human Anatomy & Physiology --- Medicine --- Health & Biological Sciences --- Animal Biochemistry --- Oncology --- Chemotherapy --- Biocatalysts --- Ferments --- Soluble ferments --- Mitotic cycle --- Nuclear cycle (Cytology) --- Medicine. --- Cancer research. --- Biomedicine. --- Cancer Research. --- Antineoplastic agents --- Catalysts --- Enzymology --- Biological rhythms --- Amidases --- Treatment --- Oncology. --- Tumors --- Cancer research
Choose an application
Featuring a diverse array of model organisms and scientific techniques, Sirtuins: Methods and Protocols collects detailed contributions from experts in the field addressing this vital family of genes. Opening with methods to generate sirtuin biology tools, the book continues by covering methods to identify sirtuin substrates, to measure sirtuin activity, and to study sirtuin biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Sirtuins: Methods and Protocols presents detailed protocols for sirtuin research that can be followed directly or modified to investigate new areas of sirtuin biology.
Sirtuins. --- Proteins. --- Proteins --- Group III Histone Deacetylases --- Intracellular Signaling Peptides and Proteins --- ADP Ribose Transferases --- Histone Deacetylases --- Pentosyltransferases --- Amino Acids, Peptides, and Proteins --- Glycosyltransferases --- Amidohydrolases --- Transferases --- Chemicals and Drugs --- Hydrolases --- Enzymes --- Enzymes and Coenzymes --- Sirtuins --- Human Anatomy & Physiology --- Health & Biological Sciences --- Animal Biochemistry --- Silent Mating Type Information Regulator 2-like Proteins --- Sir2-like Proteins --- Silent Mating Type Information Regulator 2 like Proteins --- Sir2 like Proteins --- Coenzymes and Enzymes --- Biocatalysts --- Transferase --- Glycoside Transferases --- Transferases, Glycoside --- Gene Products, Protein --- Gene Proteins --- Protein Gene Products --- Proteins, Gene --- Class I Histone Deacetylases --- Class II Histone Deacetylases --- HDAC Proteins --- Histone Deacetylase --- Histone Deacetylase Complexes --- Complexes, Histone Deacetylase --- Deacetylase Complexes, Histone --- Deacetylase, Histone --- Deacetylases, Histone --- ADP Ribose Transferase --- ADPRT --- ADPRTs --- ART Transferase --- ART Transferases --- ARTase --- ARTases --- Mono ADP-ribose Transferases --- Mono ADPribose Transferase --- Mono ADPribose Transferases --- Mono(ADP-Ribose) Transferase --- Mono(ADP-Ribosyl)transferase --- Mono(ADPribosyl)transferase --- Mono-ADP-Ribosyltransferase --- MonoADPribosyltransferase --- NAD ADP-Ribosyltransferase --- NAD(+)-L-arginine ADP-D-ribosyltransferase --- NAD-Agmatine ADP-Ribosyltransferase --- NAD-Arginine ADP-Ribosyltransferase --- NADP-ADPRTase --- NADP-Arginine ADP-Ribosyltransferase --- ADP-Ribosyltransferase --- Mono(ADP-Ribose) Transferases --- NAD(P)(+)-Arginine ADP-Ribosyltransferase --- NAD+ ADP-Ribosyltransferase --- ADP Ribosyltransferase --- ADP-Ribosyltransferase, NAD --- ADP-Ribosyltransferase, NAD+ --- ADP-Ribosyltransferase, NAD-Agmatine --- ADP-Ribosyltransferase, NAD-Arginine --- ADP-Ribosyltransferase, NADP-Arginine --- ADP-ribose Transferases, Mono --- ADPribose Transferase, Mono --- ADPribose Transferases, Mono --- Mono ADP Ribosyltransferase --- Mono ADP ribose Transferases --- NAD ADP Ribosyltransferase --- NAD Agmatine ADP Ribosyltransferase --- NAD Arginine ADP Ribosyltransferase --- NAD+ ADP Ribosyltransferase --- NADP ADPRTase --- NADP Arginine ADP Ribosyltransferase --- Ribose Transferase, ADP --- Ribose Transferases, ADP --- Transferase, ADP Ribose --- Transferase, ART --- Transferase, Mono ADPribose --- Transferases, ADP Ribose --- Transferases, ART --- Transferases, Mono ADP-ribose --- Transferases, Mono ADPribose --- Intracellular Signaling Peptides --- Intracellular Signaling Proteins --- Peptides, Intracellular Signaling --- Proteins, Intracellular Signaling --- Signaling Peptides, Intracellular --- Signaling Proteins, Intracellular --- Proteids --- Amidases --- NAD-Dependent Histone Deacetylases --- Sir2-like Deacetylases --- Sirtuin Histone Deacetylases --- Deacetylases, NAD-Dependent Histone --- Deacetylases, Sir2-like --- Histone Deacetylases, NAD-Dependent --- NAD Dependent Histone Deacetylases --- Sir2 like Deacetylases --- Life sciences. --- Proteomics. --- Animal genetics. --- Life Sciences. --- Animal Genetics and Genomics. --- Genetics --- Molecular biology --- Biosciences --- Sciences, Life --- Science
Listing 1 - 6 of 6 |
Sort by
|