Narrow your search

Library

KU Leuven (3)

ULB (2)

ULiège (2)

FARO (1)

KBR (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

More...

Resource type

book (4)

periodical (1)


Language

English (4)

French (1)


Year
From To Submit

2021 (3)

2008 (1)

1981 (1)

Listing 1 - 5 of 5
Sort by

Periodical
Predicting cross-pollination and nut set in almond orchards using weather, orchard design and the size of the pollinator population ... annual report.
Authors: ---
ISSN: 21652155 Year: 2008 Publisher: [Washington, D.C.] : U.S. Dept. of Agriculture, Agricultural Research Service

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Woody Biomass for Bioenergy Production
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.


Book
Woody Biomass for Bioenergy Production
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.


Book
Woody Biomass for Bioenergy Production
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.

Keywords

History of engineering & technology --- grindability --- torrefied biomass --- pellet --- energy consumption --- co-firing --- biomass --- gasification --- tar --- syngas cleaning --- dry filter --- pyrolysis --- chemical composition --- micro-structure --- physical properties --- scanning electron microscopy --- wood --- thermal pretreatment --- torrefaction --- timber --- harvest residues --- ethanol --- GHG savings --- Michigan --- variety and rootstock selection --- almond tree --- agricultural practices --- halophytes --- Phoenix dactylifera --- Salicornia bigelovii --- thermogravimetric analysis --- torrefied biomass --- correlation --- ultimate analysis --- solid yield --- heating value --- OLS --- 2-inch top pine residue + switchgrass blends --- pelleting process variables --- pellet quality --- specific energy consumption --- response surface models --- hybrid genetic algorithm --- pelleting --- functional groups --- pellet strength --- combustion efficiency --- forest biomass --- Australia --- biomass energy potential --- emission --- bioenergy --- grindability --- torrefied biomass --- pellet --- energy consumption --- co-firing --- biomass --- gasification --- tar --- syngas cleaning --- dry filter --- pyrolysis --- chemical composition --- micro-structure --- physical properties --- scanning electron microscopy --- wood --- thermal pretreatment --- torrefaction --- timber --- harvest residues --- ethanol --- GHG savings --- Michigan --- variety and rootstock selection --- almond tree --- agricultural practices --- halophytes --- Phoenix dactylifera --- Salicornia bigelovii --- thermogravimetric analysis --- torrefied biomass --- correlation --- ultimate analysis --- solid yield --- heating value --- OLS --- 2-inch top pine residue + switchgrass blends --- pelleting process variables --- pellet quality --- specific energy consumption --- response surface models --- hybrid genetic algorithm --- pelleting --- functional groups --- pellet strength --- combustion efficiency --- forest biomass --- Australia --- biomass energy potential --- emission --- bioenergy

Listing 1 - 5 of 5
Sort by