Listing 1 - 8 of 8 |
Sort by
|
Choose an application
This work has arisen out of the strong demand for a superior power-added efficiency (PAE) of AlGaN/GaN high electron mobility transistor (HEMT) high-power amplifiers (HPAs) that are part of any advanced wireless multifunctional RF-system with limited prime energy. Different concepts and approaches on device and design level for PAE improvements are analyzed, e.g. structural and layout changes of the GaN transistor and advanced circuit design techniques for PAE improvements of GaN HEMT HPAs.
MMIC design --- power amplifier --- AlGaN/GaN HEMT --- X-band --- power-added efficiency
Choose an application
The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components.
Technology: general issues --- Energy industries & utilities --- photovoltaic system --- battery --- DC-coupled configuration --- AC-coupled configuration --- mission profile --- reliability --- LED --- thermal cycling test --- accelerated test --- solder joint --- cracks --- current harmonics --- voltage harmonics --- power electronic converters --- cables --- capacitors --- PPS --- high-power thyristors --- reverse recovery currents --- electromagnetic launching field --- segmented LSTM --- microgrid inverter --- IGBT reliability --- online evaluation --- fusion algorithm --- multi-chip IGBT module --- bond wire --- module transconductance --- temperature calibration --- failure monitoring --- sensor lamp --- low-light mode --- high-light mode --- AC motor drive --- junction temperature --- lifetime prediction --- power MOSFET --- loss modeling --- SiC MOSFET --- AlGaN/GaN HEMT --- cascode structure --- single event effects --- technology computer-aided design simulation --- heavy-ion irradiation experiment --- photovoltaic systems --- DC/AC converter --- maintenance --- power system faults --- availability --- condition monitoring --- power device --- power electronics --- photovoltaic system --- battery --- DC-coupled configuration --- AC-coupled configuration --- mission profile --- reliability --- LED --- thermal cycling test --- accelerated test --- solder joint --- cracks --- current harmonics --- voltage harmonics --- power electronic converters --- cables --- capacitors --- PPS --- high-power thyristors --- reverse recovery currents --- electromagnetic launching field --- segmented LSTM --- microgrid inverter --- IGBT reliability --- online evaluation --- fusion algorithm --- multi-chip IGBT module --- bond wire --- module transconductance --- temperature calibration --- failure monitoring --- sensor lamp --- low-light mode --- high-light mode --- AC motor drive --- junction temperature --- lifetime prediction --- power MOSFET --- loss modeling --- SiC MOSFET --- AlGaN/GaN HEMT --- cascode structure --- single event effects --- technology computer-aided design simulation --- heavy-ion irradiation experiment --- photovoltaic systems --- DC/AC converter --- maintenance --- power system faults --- availability --- condition monitoring --- power device --- power electronics
Choose an application
The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components.
Technology: general issues --- Energy industries & utilities --- photovoltaic system --- battery --- DC-coupled configuration --- AC-coupled configuration --- mission profile --- reliability --- LED --- thermal cycling test --- accelerated test --- solder joint --- cracks --- current harmonics --- voltage harmonics --- power electronic converters --- cables --- capacitors --- PPS --- high-power thyristors --- reverse recovery currents --- electromagnetic launching field --- segmented LSTM --- microgrid inverter --- IGBT reliability --- online evaluation --- fusion algorithm --- multi-chip IGBT module --- bond wire --- module transconductance --- temperature calibration --- failure monitoring --- sensor lamp --- low-light mode --- high-light mode --- AC motor drive --- junction temperature --- lifetime prediction --- power MOSFET --- loss modeling --- SiC MOSFET --- AlGaN/GaN HEMT --- cascode structure --- single event effects --- technology computer-aided design simulation --- heavy-ion irradiation experiment --- photovoltaic systems --- DC/AC converter --- maintenance --- power system faults --- availability --- condition monitoring --- power device --- power electronics --- n/a
Choose an application
The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components.
photovoltaic system --- battery --- DC-coupled configuration --- AC-coupled configuration --- mission profile --- reliability --- LED --- thermal cycling test --- accelerated test --- solder joint --- cracks --- current harmonics --- voltage harmonics --- power electronic converters --- cables --- capacitors --- PPS --- high-power thyristors --- reverse recovery currents --- electromagnetic launching field --- segmented LSTM --- microgrid inverter --- IGBT reliability --- online evaluation --- fusion algorithm --- multi-chip IGBT module --- bond wire --- module transconductance --- temperature calibration --- failure monitoring --- sensor lamp --- low-light mode --- high-light mode --- AC motor drive --- junction temperature --- lifetime prediction --- power MOSFET --- loss modeling --- SiC MOSFET --- AlGaN/GaN HEMT --- cascode structure --- single event effects --- technology computer-aided design simulation --- heavy-ion irradiation experiment --- photovoltaic systems --- DC/AC converter --- maintenance --- power system faults --- availability --- condition monitoring --- power device --- power electronics --- n/a
Choose an application
This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.
History of engineering & technology --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0 --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0
Choose an application
While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.
ohmic contact --- n/a --- MESFET --- optical band gap --- wide-bandgap semiconductor --- annealing temperature --- junction termination extension (JTE) --- channel length modulation --- silicon carbide (SiC) --- amorphous InGaZnO (a-IGZO) --- light output power --- GaN --- electrochromism --- large signal performance --- passivation layer --- 4H-SiC --- positive gate bias stress (PGBS) --- asymmetric power combining --- ultrahigh upper gate height --- high electron mobility transistors --- space application --- gallium nitride (GaN) --- phase balance --- edge termination --- distributed Bragg reflector --- cathode field plate (CFP) --- ammonothermal GaN --- anode field plate (AFP) --- W band --- GaN high electron mobility transistor (HEMT) --- 1T DRAM --- growth of GaN --- tungsten trioxide film --- thin-film transistor (TFT) --- micron-sized patterned sapphire substrate --- power added efficiency --- T-anode --- analytical model --- AlGaN/GaN --- harsh environment --- high-temperature operation --- amplitude balance --- buffer layer --- characteristic length --- Ku-band --- DIBL effect --- I–V kink effect --- flip-chip light-emitting diodes --- high electron mobility transistors (HEMTs) --- power amplifier --- sidewall GaN --- external quantum efficiency --- breakdown voltage (BV) --- threshold voltage (Vth) stability --- regrown contact --- AlGaN/GaN HEMT --- TCAD --- high electron mobility transistor (HEMT) --- I-V kink effect
Choose an application
This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.
History of engineering & technology --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0
Choose an application
This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.
lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0
Listing 1 - 8 of 8 |
Sort by
|