Narrow your search
Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Unmanned aircraft design
Author:
ISBN: 1681731681 1681731681 9781681731681 9781681731681 9781681731698 Year: 2017 Publisher: [San Rafael, California] Morgan & Claypool

Loading...
Export citation

Choose an application

Bookmark

Abstract


Dissertation
Master thesis and internship[BR]- Master's thesis : Investigation of various transonic stabilisation techniques for full potential flows calculation in DARTFlo[BR]- Integration Internship
Authors: --- --- ---
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The preliminary aircraft design is often performed based on low-fidelity aerodynamic&#13;models facilitating the evaluation of best-suited aircraft configurations thanks to low computational costs and reasonable accuracy at this early design stage. The Full Potential&#13;equation, based on the inviscid and isentropic assumptions, has demonstrated its ability&#13;to meet those requirements. However, the mathematical nature of this partial differential&#13;equation highlights that when the flow switches from subsonic to supersonic, it converts&#13;from elliptic to hyperbolic. This flow physics change needs to be reflected in the numerical&#13;implementation. DARTFlo, a full-potential solver, is implemented based on a physicsdependent&#13;solution experiencing mesh-dependency. Thenceforward, the present thesis aims&#13;at characterising the mesh-dependency of this physics-dependent solution and to propose&#13;alternatives to withdraw it.&#13;The current physics-dependent implementation is studied through a mesh convergence&#13;analysis in three different test cases to characterise the mesh-dependency. The analysis&#13;relies on two comparison axes, the first is a study of global flow parameters and the second&#13;treats the problem from a local point of view. The three test cases are constructed to&#13;study the behaviour of each solution in different situations. The original DARTFlo&#13;implementation illustrates its mesh-dependency by local flow parameters which do not&#13;converge with respect to the mesh refinement as well as by instabilities appearing in the&#13;supersonic zones when the mesh is highly refined.&#13;In parallel, three alternatives are derived and compared with the original implementation&#13;to assess their improvements in removing the mesh-dependency problem. The first&#13;alternative demonstrates improved mesh convergence and enables to partially remove the&#13;results mesh-dependency according to the case studied. However, the two others do not&#13;reveal to act on the mesh-dependency of the physics-dependent solutions.


Book
Aircraft Noise
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Noise generated by aircraft continues to be a pressing issue for society, as an increasing number of people residing in close proximity to airports make noise complaints on a regular basis. The reduction in aircraft noise is therefore a very important engineering task that would require the careful identification of different acoustic sources around the airplane, the understanding of noise source behavior and ranking along flight trajectories, sophisticated measurement techniques, and robust and accurate numerical tools aimed at predicting the generation of noise, the propagation through the atmosphere, and the resulting noise impact along approach and departure flights. For an overall assessment of the situation, it has to be assessed along entire flight trajectories rather than assessing limited operating conditions only. Furthermore, it is highly recommended to apply multiple acoustic metrics and account for different and widespread observer locations along the flight. Only then can the overall situation be adequately captured. Obviously, this is a highly multidisciplinary effort and no single discipline can address this problem. This reprint includes selected research studies with that multidisciplinary context that deal with numerical or experimental investigations that range from the investigation of specific noise sources to the assessment of noise generated by the overall aircraft in operation. Both basic and applied research studies involving the modelling and simulation of aircraft noise are included.

MEGAFLOW - numerical flow simulation for aircraft design : results of the second phase of the German CFD initiative MEGAFLOW, presented during its closing symposium at DLR, Braunschweig, Germany, December 10 and 11, 2002
Authors: ---
ISSN: 16122909 ISBN: 9783540243830 3540243836 9786610635566 1280635568 3540323821 Year: 2005 Volume: v.89 Publisher: Berlin ; [Great Britain] : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume contains results of the German CFD initiative MEGAFLOW which combines many of the CFD development activities from DLR, universities and aircraft industry. It highlights recent improvements and enhancements of the MEGAFLOW software system. This software includes the block-structured Navier-Stokes code FLOWer and the unstructured Navier-Stokes code TAU. Improvements to numerical algorithms and physical modelling capabilities of these codes are discussed. Validation activities concerning their capability to predict viscous flows around complex industrially relevant configurations for transport aircraft design are presented. The high level of maturity both codes have reached is demonstrated based on the intensive use of FLOWer and TAU by the German aerospace industry in the design process of a new aircraft.


Book
Aircraft Noise
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Noise generated by aircraft continues to be a pressing issue for society, as an increasing number of people residing in close proximity to airports make noise complaints on a regular basis. The reduction in aircraft noise is therefore a very important engineering task that would require the careful identification of different acoustic sources around the airplane, the understanding of noise source behavior and ranking along flight trajectories, sophisticated measurement techniques, and robust and accurate numerical tools aimed at predicting the generation of noise, the propagation through the atmosphere, and the resulting noise impact along approach and departure flights. For an overall assessment of the situation, it has to be assessed along entire flight trajectories rather than assessing limited operating conditions only. Furthermore, it is highly recommended to apply multiple acoustic metrics and account for different and widespread observer locations along the flight. Only then can the overall situation be adequately captured. Obviously, this is a highly multidisciplinary effort and no single discipline can address this problem. This reprint includes selected research studies with that multidisciplinary context that deal with numerical or experimental investigations that range from the investigation of specific noise sources to the assessment of noise generated by the overall aircraft in operation. Both basic and applied research studies involving the modelling and simulation of aircraft noise are included.

Keywords

Technology: general issues --- History of engineering & technology --- aircraft noise simulation --- conceptual aircraft design --- noise certification --- ICAO Annex 16 --- PANAM --- RCE --- green aviation --- airport operations --- aircraft noise impact --- noise prediction method --- large eddy simulations --- jet noise --- jet–surface interaction --- aircraft noise --- simulation --- sonAIR --- FLULA2 --- AEDT --- validation with measurements --- low-noise aircraft design --- center of excellence --- Sustainable and Energy-Efficient Aviation (SE2A) --- forward swept wing --- PrADO --- aircraft noise prediction --- supersonic transport aircraft --- NASA STCA --- FAA NPRM --- LTO noise --- SuperSonic Transport (SST) --- aircraft conceptual design --- aeroacoustics --- rotor-stator interaction noise --- porous material --- turbulence modeling --- synthetic turbulence --- CFD --- supersonic aircraft --- ICAO Annex 16 Vol.1 --- multiobjective optimisation --- community noise --- air quality --- sound quality --- noise abatement procedures --- spectral matching --- aircraft noise simulation --- conceptual aircraft design --- noise certification --- ICAO Annex 16 --- PANAM --- RCE --- green aviation --- airport operations --- aircraft noise impact --- noise prediction method --- large eddy simulations --- jet noise --- jet–surface interaction --- aircraft noise --- simulation --- sonAIR --- FLULA2 --- AEDT --- validation with measurements --- low-noise aircraft design --- center of excellence --- Sustainable and Energy-Efficient Aviation (SE2A) --- forward swept wing --- PrADO --- aircraft noise prediction --- supersonic transport aircraft --- NASA STCA --- FAA NPRM --- LTO noise --- SuperSonic Transport (SST) --- aircraft conceptual design --- aeroacoustics --- rotor-stator interaction noise --- porous material --- turbulence modeling --- synthetic turbulence --- CFD --- supersonic aircraft --- ICAO Annex 16 Vol.1 --- multiobjective optimisation --- community noise --- air quality --- sound quality --- noise abatement procedures --- spectral matching


Book
Aircraft Noise
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Noise generated by aircraft continues to be a pressing issue for society, as an increasing number of people residing in close proximity to airports make noise complaints on a regular basis. The reduction in aircraft noise is therefore a very important engineering task that would require the careful identification of different acoustic sources around the airplane, the understanding of noise source behavior and ranking along flight trajectories, sophisticated measurement techniques, and robust and accurate numerical tools aimed at predicting the generation of noise, the propagation through the atmosphere, and the resulting noise impact along approach and departure flights. For an overall assessment of the situation, it has to be assessed along entire flight trajectories rather than assessing limited operating conditions only. Furthermore, it is highly recommended to apply multiple acoustic metrics and account for different and widespread observer locations along the flight. Only then can the overall situation be adequately captured. Obviously, this is a highly multidisciplinary effort and no single discipline can address this problem. This reprint includes selected research studies with that multidisciplinary context that deal with numerical or experimental investigations that range from the investigation of specific noise sources to the assessment of noise generated by the overall aircraft in operation. Both basic and applied research studies involving the modelling and simulation of aircraft noise are included.


Book
10th EASN International Conference on Innovation in Aviation & Space to the Satisfaction of the European Citizens
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue book contains selected papers from works presented at the 10th EASN (European Aeronautics Science Network) International Conference on Innovation in Aviation & Space, which was held from the 2nd until the 4th of September, 2020. About 350 remote participants contributed to a high-level scientific gathering providing some of the latest research results on the topic, as well as some of the latest relevant technological advancements. Eleven interesting articles, which cover a wide range of topics including characterization, analysis and design, as well as numerical simulation, are contained in this Special Issue.

Keywords

boarding --- simulation --- cabin --- aircraft --- passenger --- movement --- Covid-19 --- turbofan --- unmanned aerial vehicles --- cruise missile --- aerial target --- axial compressor --- blade --- titanium alloy --- aluminium alloy --- titanium aluminide --- safety factor --- thermal management --- hybrid-electric aircraft --- ram air–based cooling --- compact heat exchangers --- meredith effect --- aircraft air quality --- adaptive ECS --- subject testing --- boundary layer ingestion --- propulsive fuselage --- wake-filling --- turbo-electric --- proof-of-concept --- wind tunnel --- fan rig --- multi-disciplinary aircraft design --- collaborative research --- microturbine --- sustainable aviation fuel --- ATJ --- HEFA --- emissions --- alternative fuel --- biocomponent --- combustion --- fuel blend --- drop-in fuel --- synthesized kerosene --- cargo fire protection --- fire suppression --- testing --- iron bird --- hydraulic system --- flight simulator --- force control --- PID control --- unmanned aircraft --- thrust determination --- flight testing --- e-Genius-Mod --- free-flight wind tunnel --- hybrid-electric propulsion --- regional air travel --- alternate airports --- top-level aircraft requirements --- figures of merit --- aircraft design --- aircraft structure --- strut-braced wing --- parametric modeling --- decomposition principles --- strength analysis --- finite element method (FEM) --- doublet lattice method --- four-level approach --- n/a --- ram air-based cooling


Book
10th EASN International Conference on Innovation in Aviation & Space to the Satisfaction of the European Citizens
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue book contains selected papers from works presented at the 10th EASN (European Aeronautics Science Network) International Conference on Innovation in Aviation & Space, which was held from the 2nd until the 4th of September, 2020. About 350 remote participants contributed to a high-level scientific gathering providing some of the latest research results on the topic, as well as some of the latest relevant technological advancements. Eleven interesting articles, which cover a wide range of topics including characterization, analysis and design, as well as numerical simulation, are contained in this Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- boarding --- simulation --- cabin --- aircraft --- passenger --- movement --- Covid-19 --- turbofan --- unmanned aerial vehicles --- cruise missile --- aerial target --- axial compressor --- blade --- titanium alloy --- aluminium alloy --- titanium aluminide --- safety factor --- thermal management --- hybrid-electric aircraft --- ram air-based cooling --- compact heat exchangers --- meredith effect --- aircraft air quality --- adaptive ECS --- subject testing --- boundary layer ingestion --- propulsive fuselage --- wake-filling --- turbo-electric --- proof-of-concept --- wind tunnel --- fan rig --- multi-disciplinary aircraft design --- collaborative research --- microturbine --- sustainable aviation fuel --- ATJ --- HEFA --- emissions --- alternative fuel --- biocomponent --- combustion --- fuel blend --- drop-in fuel --- synthesized kerosene --- cargo fire protection --- fire suppression --- testing --- iron bird --- hydraulic system --- flight simulator --- force control --- PID control --- unmanned aircraft --- thrust determination --- flight testing --- e-Genius-Mod --- free-flight wind tunnel --- hybrid-electric propulsion --- regional air travel --- alternate airports --- top-level aircraft requirements --- figures of merit --- aircraft design --- aircraft structure --- strut-braced wing --- parametric modeling --- decomposition principles --- strength analysis --- finite element method (FEM) --- doublet lattice method --- four-level approach --- boarding --- simulation --- cabin --- aircraft --- passenger --- movement --- Covid-19 --- turbofan --- unmanned aerial vehicles --- cruise missile --- aerial target --- axial compressor --- blade --- titanium alloy --- aluminium alloy --- titanium aluminide --- safety factor --- thermal management --- hybrid-electric aircraft --- ram air-based cooling --- compact heat exchangers --- meredith effect --- aircraft air quality --- adaptive ECS --- subject testing --- boundary layer ingestion --- propulsive fuselage --- wake-filling --- turbo-electric --- proof-of-concept --- wind tunnel --- fan rig --- multi-disciplinary aircraft design --- collaborative research --- microturbine --- sustainable aviation fuel --- ATJ --- HEFA --- emissions --- alternative fuel --- biocomponent --- combustion --- fuel blend --- drop-in fuel --- synthesized kerosene --- cargo fire protection --- fire suppression --- testing --- iron bird --- hydraulic system --- flight simulator --- force control --- PID control --- unmanned aircraft --- thrust determination --- flight testing --- e-Genius-Mod --- free-flight wind tunnel --- hybrid-electric propulsion --- regional air travel --- alternate airports --- top-level aircraft requirements --- figures of merit --- aircraft design --- aircraft structure --- strut-braced wing --- parametric modeling --- decomposition principles --- strength analysis --- finite element method (FEM) --- doublet lattice method --- four-level approach


Book
10th EASN International Conference on Innovation in Aviation & Space to the Satisfaction of the European Citizens
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue book contains selected papers from works presented at the 10th EASN (European Aeronautics Science Network) International Conference on Innovation in Aviation & Space, which was held from the 2nd until the 4th of September, 2020. About 350 remote participants contributed to a high-level scientific gathering providing some of the latest research results on the topic, as well as some of the latest relevant technological advancements. Eleven interesting articles, which cover a wide range of topics including characterization, analysis and design, as well as numerical simulation, are contained in this Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- boarding --- simulation --- cabin --- aircraft --- passenger --- movement --- Covid-19 --- turbofan --- unmanned aerial vehicles --- cruise missile --- aerial target --- axial compressor --- blade --- titanium alloy --- aluminium alloy --- titanium aluminide --- safety factor --- thermal management --- hybrid-electric aircraft --- ram air–based cooling --- compact heat exchangers --- meredith effect --- aircraft air quality --- adaptive ECS --- subject testing --- boundary layer ingestion --- propulsive fuselage --- wake-filling --- turbo-electric --- proof-of-concept --- wind tunnel --- fan rig --- multi-disciplinary aircraft design --- collaborative research --- microturbine --- sustainable aviation fuel --- ATJ --- HEFA --- emissions --- alternative fuel --- biocomponent --- combustion --- fuel blend --- drop-in fuel --- synthesized kerosene --- cargo fire protection --- fire suppression --- testing --- iron bird --- hydraulic system --- flight simulator --- force control --- PID control --- unmanned aircraft --- thrust determination --- flight testing --- e-Genius-Mod --- free-flight wind tunnel --- hybrid-electric propulsion --- regional air travel --- alternate airports --- top-level aircraft requirements --- figures of merit --- aircraft design --- aircraft structure --- strut-braced wing --- parametric modeling --- decomposition principles --- strength analysis --- finite element method (FEM) --- doublet lattice method --- four-level approach --- n/a --- ram air-based cooling


Book
Megadesign and MegaOpt - German initiatives for aerodynamic simulation and optimization in aircraft design : results of the Closing Symposium of the Megadesign and MegaOpt Projects, Braunschweig, Germany, 23-24 May, 2007
Author:
ISBN: 3642260624 3642040926 9786612459498 128245949X 3642040934 Year: 2009 Publisher: Berlin : Springer Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume contains results of the German CFD initiative MEGADESIGN which combines CFD development activities from DLR, universities and aircraft industry. Based on the DLR flow solvers FLOWer and TAU the main objectives of the four-years project is to ensure the prediction accuracy with a guaranteed error bandwidth for certain aircraft configurations at design conditions, to reduce the simulation turn-around time for large-scale applications significantly, to improve the reliability of the flow solvers for full aircraft configurations in the complete flight regime, to extend the flow solvers to allow for multidisciplinary simulations and to establish numerical shape optimization as a vital tool within the aircraft design process. This volume highlights recent improvements and enhancements of the flow solvers as well as new developments with respect to aerodynamic and multidisciplinary shape optimization. Improved numerical simulation capabilities are demonstrated by several industrial applications.

Keywords

Aerodynamics -- Congresses. --- Airplanes -- Design and construction -- Congresses. --- Computational fluid dynamics -- Congresses. --- Aerodynamics --- Airplanes --- Mechanical Engineering --- Aeronautics Engineering & Astronautics --- Engineering & Applied Sciences --- Design and construction --- Aerodynamics. --- Aerodynamics, Subsonic --- Streamlining --- Subsonic aerodynamics --- Engineering. --- Algebra. --- Continuum physics. --- Applied mathematics. --- Engineering mathematics. --- Fluid mechanics. --- Engineering design. --- Aerospace engineering. --- Astronautics. --- Aerospace Technology and Astronautics. --- Classical Continuum Physics. --- Engineering Fluid Dynamics. --- Appl.Mathematics/Computational Methods of Engineering. --- Engineering Design. --- Dynamics --- Fluid dynamics --- Gas dynamics --- Pneumatics --- Aeronautics --- Wind tunnels --- Hydraulic engineering. --- Classical and Continuum Physics. --- Mathematical and Computational Engineering. --- Design, Engineering --- Engineering --- Industrial design --- Strains and stresses --- Engineering analysis --- Mathematical analysis --- Engineering, Hydraulic --- Fluid mechanics --- Hydraulics --- Shore protection --- Mathematics --- Space sciences --- Astrodynamics --- Space flight --- Space vehicles --- Design --- Hydromechanics --- Continuum mechanics --- Classical field theory --- Continuum physics --- Physics --- Aeronautical engineering --- Astronautics --- MEGAFLOW. --- Aircraft design. --- Physics. --- Mathematical and Computational Engineering Applications. --- Data processing. --- Natural philosophy --- Philosophy, Natural --- Physical sciences

Listing 1 - 10 of 12 << page
of 2
>>
Sort by