Narrow your search

Library

UCLouvain (2)


Resource type

book (2)


Language

English (1)

French (1)


Year
From To Submit

2010 (1)

2006 (1)

Listing 1 - 2 of 2
Sort by

Book
New adipokines identified as downstream targets for adiponectin : lessons from adiponectin overexpressing- or deficient-mice

Loading...
Export citation

Choose an application

Bookmark

Abstract

Contexte et objectif : Les adipokines jouent un rôle central dans la pathogénie du syndrome métabolique. L’adiponectine (ApN) est un puissant régulateur de l’homéostasie énergétique et immunitaire. L’identification d’adipokines-cibles de l’ApN devrait permettre de mieux comprendre son action. Un modèle de souris transgéniques (Tg) surexprimant la forme native de l’ApN spécifiquement dans le tissu adipeux (TA) blanc a été préalablement conçu au laboratoire. Nous avons utilisé ce modèle pour étudier le profil sécrétoire d’adipokines consécutif à une surexpression modérée d’ApN. Nous avons également recherché si un profil sécrétoire « en miroir » s’observe chez les souris où le gène de l’ApN a été invalidé (ApN-KO).
Méthodes : Nous avons comparé le profil sécrétoire de adipocytes et des cellules stromales vasculaires (CSV) isolés du TA inguinal obtenu des différentes souris, puis cultivés pendant 8h. Les milieux de culture ont été « balayés » par des « cytokine antibody arrays » capables de détecter 144 cytokines simultanément. La sécrétion des adipokines détectées a été quantifiée par ELISA et leur expression a été mesurée par RTQ-PCR. L’activité NF-κB a été mesurée par ELISA et la phosphorylation de Jun N-terminal kinase (JNK) et extracellular signal-regulated kinase (ERK 1 / 2) par western blot.
Résultats : Le criblage par cytokine antibody arrays a montré que ~ 10 cytokines de chaque fraction cellulaire différaient entre les souris Tg et leurs témoins (WT). Les quantifications ont été réalisées par ELISA. Par rapport aux souris WT, la sécrétion de 3 facteurs pro-inflammatoires (IL-17B, IL-31 et TNF-α) et de 3 facteurs de croissance (GF) hématopoïétiques (Thrombopoietin, TPO ; Granulocyte-, GCSF et granulocyte macrophage-stimulating GF, GMCSF) étaient réduits dans les adipocytes de souris Tg. Dans la fraction SV de ces souris, outre les GF hématopoïétiques (GCSF et GMCSF), la sécrétion d’un autre GF (vascular endothelial GF receptor 1, VEGFR1), de 2 chemokines (RANTES et ICAM-1) et de 2 facteurs pro-inflammatoires (IL-6 et IL-12p70) était aussi réduite. Seule une cytokine était sécrétée en excès par les CSV de souris Tg : interleukin-1 receptor 4 (IL-1R4) qui présente de propriété anti-inflammatoires. La plupart de ces changements correspondaient à des changements semblables d’ARNm. Afin de déterminer si ces changements étaient spécifiquement induits par l’ApN, nous avons recherché s’il existait un profil inverse d’expression de ces adipokines chez les souris ApN-KO. L’expression de TPO était en effet augmentée dans des adipocytes des souris ApN-KO tandis que l’expression de IL-12p70, VEGFR1 et ICAM-1 était augmentée dans les CSV de ces souris. De façon concomitante, l’expression de l’IL-1R4 était réduite dans les CSV des souris ApN-KO. Ensuite nous avons étudié les mécanismes moléculaires qui sous-tendent ces changements inflammatoires. L’activité NF-κB et ERK 1 / 2 était considérablement réduite dans le TA de souris Tg, tandis que la phosphorylation de JNK n’était pas affectée.
Conclusion : Ces données évoquent un rôle protecteur de l’ApN dans la défense contre l’inflammation à cas bruit. En effet, en régulant la sécrétion d’adipokines, l’pN induit un profil sécrétoire moins inflammatoire aussi bien dans les adipocytes que dans les CSV. Ces adipokines pourraient être des cibles thérapeutiques intéressantes dans la gestion du syndrome métabolique Background and aims : Adipokines play a central role in the pathogenesis of the metabolic syndrome. Adiponectin (ApN) is a master regulator of immune and fuel homeostasis. Identifying downstream adipokines targeted by ApN may help understanding its action. We have generated transgenic (Tg) mice allowing persistent and moderate overexpression of ApN specifically in white adipose tissue (ET) (by using the aP2 promoter). We took advantage of this model unravel the adipokine secretion profile triggered by ApN in AT. We also examine whether a reverse profile occurred in ApN-knockout (ApN-KO) mice.
Methods: To investigate the early and specific effects of ApN, mice were studied at 10 wks of age (before any changes in adiposity or in circulating glucose/lipids). AT was fractionated into adipocytes and stromal-vascular cells (SVC), which cere cultured for 8h. Medium was screened by cytokine antibody arrays allowing the detection of 144 cytokines. Secretion of relevant adipokines was quantified by ELISA and gene expression by RTQ-PCR. NF-κB activity was measured by ELISA and Jun N-terminal kinase (JNK) and Extracellular singla-regulated kinase (ERK1/2) phosphorylation by western blot.
Results : Profiling of secretory products by antibody arrayx showed that ~ 10 cytokines from each cellular fraction roughly differed between Tg mice and wild type (WT) mice. These adipokines were quantified by ELISA. When compared to WT mice, the secretion of 3 pro-inflammatory factors. (IL-17B, IL-21, TNF-α) and 3 hemotopoietic growth factors (GF) (Trhombopoietin, TPO; Granulocyte-, GCSF and granulocyte macrophage-stimulating GF, GMCSF) was reduced in adipocytes of Tg mice. In SVC of these mice, besides the hematopoietic GFs (GMCSF, GCSF), the secretuib if another GF (vascular endothelial GF receptor 1; VEGFR1), 2 chemokines (RANTES, ICAM-1) ad 2 pro-inflammatory factors (IL-6, IL-12p70) was reduced as well. Only one cytokine was oversecreted by SVC of Tg mice: interleukin-1 receptor 4 (IL-1R4) that exhibits anti-inflammatory properties. Most of these changes in secretion were due to corresponding changes in mRNAs. To investigate whether these changes were specifically induced by ApN, we searched for a reverse profile of adipokine expression in mice lacking ApN. TPO gene expression was increased in adipocytes of ApN-KO mice, and the expression of VEGFR1, IL-12p70 and ICAM-1 was augmented in SVC of these mice. Concomitantlu, IL-1R4 expression was reduced in SVC of ApN-KO mice. We next investigated the molecular pathways underlying these inflammatory changes. NF-κB and ERK1/2 activity was remarkable reduced in AT of Tg mice, while JNK phosphorylation was unaffected.
Conclusion: ApN regulates in vivo the secretion of downstream adipokines, thereby inducing a shift of the immune balance in both adipocytes and SVC toward a less inflammatory phenotype. These downstream adipokines may be new therapeutic targets for the management of the metabolic syndrome


Book
Les adipokines identifiées dans le tissu adipeux viscéral et modifiées dans l'obésité humaine

Loading...
Export citation

Choose an application

Bookmark

Abstract

Central visceral obesity is strongly associated with chronic disorders such as type 2 diabetes, cardiovascular disease and cancer. Adipokines are involved in the pathogenesis of these obesity-linked disorders. However, adipokines secreted by visceral adipose tissue (VAT) are still poorly characterised.
We have searched for novel adipokines secreted by VAT determined whther their secretion was altered in obesity and evaluated the respective contribution of adipocytes vs non-fat (stromal-vascular, SV) cells.
In this context we have identified for the first time 6 adipokines secreted by each cellular fraction of VAT from lean and obese subjects by. These adipokines include 3 chemokines [Growth-Related Oncogen factor (GRO), Regulated upon Activation Normal T cells Expresses and Secreted (RANTES), Macrophage Inflammatory Protein-1β], 1 interleukin (IL-7), 1 tissue inhibitor of metalloproteinases (TIMP-1) and 1 hematopoietic growth factor (thrombopoeitin). Secretion of each adipokine was enhanced in obese subjects with of by pretranslational mechanisms. The higher proportion of macrophages and endothelial cells in VAT of obese subjects may contribute tour findings, as well as changes in intrinsic properties of hypertrophied adipocytes. Accordingly, mRNA concentrations of the majority of these adipokines markedly increased during adipocyte differentiation.
Furthermore we have studied some factors that could change the production of our adipokines : catecholamines (and cAMP), glucocorticoids, insulin and TFNα. We have found that the hormones, normally deregulated in obesity, influenced only moderately the expressions of our adipokines. In contrast, the effects of the TNFα on adipokines were strongly marked. According to these facts we could suggest that the macrophages, the most important source of the TNFα in adipose tissue of obese subjects, may have more impact on the regulation of the adipokines than the hormones studied.
In conclusion, six adipokines were newly identified in VAT. Their expression and secretion were increased in obesity, with a relatively similar contribution of adipocytes and SV cells. Because of their known involvement in cardiovascular disease, cancer or insulin resistance, these adipokines may play a role in obesity-linked adverse health outcomes L’obésité viscérale est un facteur de risque de nombreuses maladies chroniques telles que le diabète de type 2, les maladies cardiovasculaires ou encore certains cancers. Les adipokines sont impliquées dans la pathogénie des co-morbidités de l’obésité. Toutefois, les adipokines secrétées par le tissu adipeux (TA) sont encore très peu étudiées. D’autre part, la contribution des différentes fractions du TA viscéral à cette sécrétion est encore peu connue.
Dans ce cadre, nous avons identifié 6 adipokines, secrétées par le TA viscéral. Ces adipokines comprennent 3 chémokines [Growth-Related Oncogen factor (GRO), Regulated upon Activation Normal T cells Expresses and Secreted (RANTES), Macrophage Inflammatory Protein-1β (MIP-1β)], 1 protéase de la matrice extracellulaire [Tissue Inhibitor of Metalloproteinases (TIMP-1)], 1 facteur hématopoïétique [thrombopoiétine (TPO)] et 1 interleukine (IL-7). La sécrétion de ces adipokines est augmentée chez les sujets obèses par rapport aux minces, et ce à la fois dans les fractions adipocytaire et stomacale vasculaire (FSV) du TA. Nous avons mesuré des variations superposables des ARNm dans les deux fractions : l’augmentation de sécrétion a donc pour origine des mécanismes pré-traductionnels.
Nous avons également mis en évidence une plus grande proportion de macrophages et de cellules endothéliales qui appartiennent à la FSV dans le TA. Ces cellules sont des bonnes sources de cytokines. De concert, elles contribuent à la sécrétion accrue d’adipokines des adipocytes hypertrophiés. En accord avec ces données, l’expression de presque toutes nos adipokines augmente au cours de la différenciation adipocytaire.
Enfin, nous avons étudié certains facteurs (hormones, TNAα) qui peuvent réguler la production de ces adipokines et qui sont susceptibles d’être à l’origine de leur surexpression dans l’obésité. L’effet des hormones est perturbées dans l’obésité (catécholamines, glucocorticoïdes et insuline) est modéré sur l’expression des adipokines. Au contraire, l’effet de TNFα est fortement marqué. Nos données pourraient don suggérer que l’accumulation de macrophages dans le TA des sujets obèse, principale source de TNFα, aurait plus d’impact sur la régulation des adipokines étudiées que les modifications hormonales.
Pour conclure, les 6 adipokines que nous venons d’identifier dans le TA viscéral pourraient stimuler la croissance du TA et également intervenir dans le développement des maladies cardiovasculaires. Elles pourraient aussi favoriser la survenue de la résistance à l’insuline de certaines formes de cancer

Listing 1 - 2 of 2
Sort by