Narrow your search

Library

FARO (8)

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

ULiège (8)

VIVES (8)

Vlaams Parlement (8)

More...

Resource type

book (20)


Language

English (20)


Year
From To Submit

2022 (8)

2021 (9)

2020 (3)

Listing 1 - 10 of 20 << page
of 2
>>
Sort by

Book
Hospital Acquired Infections, Multidrug Resistant (MDR) Bacteria, Alternative Approaches to Antibiotic Therapy
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacterial resistance to known and currently used antibiotics represents a growing issue worldwide. It poses a major problem in the treatment of infectious diseases in general and hospital-acquired infections in particular. This is in part due to the overuse and misuse of antibiotics in past decades, which led to the selection of highly resistant bacteria and even so-called superbugs – multidrug-resistant (MDR) bacteria. Nosocomial infections, particularly, are often caused by MDR bacterial pathogens and the treatment of such infections is very complicated and extensive, often leading to various side effects, including adverse effects on the natural human microbiome. At the same time, the development of novel antibiotics is lagging with very few new ones in the pipeline. Finding viable alternatives to treat such infections may help to overcome these therapeutic issues. This publication brings novel developments in the field of bacterial resistance, mainly in the hospital settings, adequate antibiotic therapy, and identification of compounds useful to battle this growing issue.

Keywords

Medicine --- Epidemiology & medical statistics --- VRE --- GIT --- hemato-oncological patients --- clonality --- antibiotic stewardship --- resistance --- consumption of antibiotics --- clonal spread --- Enterococcus faecium --- Enterococcus faecalis --- linezolid resistance --- 23S rRNA --- optrA --- carbapenem-resistant Klebsiella pneumoniae --- carbapenem-resistant Acinetobacter baumannii --- N-acetylcysteine --- septic shock --- critically ill patients --- newborn --- infection --- bacteria --- antibiotic therapy --- hops --- C. difficile --- rat model --- Staphylococcus aureus --- MRSA --- spa typing --- MLST --- SCCmec typing --- clonal analysis --- epidemiology --- cancer patients --- duration of treatment --- colistin --- propensity score analysis --- multidrug-resistant Acinetobacter baumannii --- urinary tract infections --- UTIs --- MDR --- Escherichia coli --- Klebsiella --- uropathogens --- AMR --- antibiotic resistance --- ESBL-producing Klebsiella pneumoniae --- urinary tract infection --- clinical impact --- economic impact --- ventilator-associated pneumonia --- Klebsiella spp. --- Escherichia spp. --- pulsed-field gel electrophoresis (PFGE) --- endogenous infection --- methicillin-resistant --- porcine model --- methicillin-resistant Staphylococcus aureus (MRSA) --- long term care facilities (LTCF) --- multidrug resistance (MDR) --- enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) --- ESBL --- PCR --- primer --- antimicrobial resistance --- infection prevention and control --- antimicrobial stewardship --- hospital --- cluster analysis --- principal component analysis


Book
Hospital Acquired Infections, Multidrug Resistant (MDR) Bacteria, Alternative Approaches to Antibiotic Therapy
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacterial resistance to known and currently used antibiotics represents a growing issue worldwide. It poses a major problem in the treatment of infectious diseases in general and hospital-acquired infections in particular. This is in part due to the overuse and misuse of antibiotics in past decades, which led to the selection of highly resistant bacteria and even so-called superbugs – multidrug-resistant (MDR) bacteria. Nosocomial infections, particularly, are often caused by MDR bacterial pathogens and the treatment of such infections is very complicated and extensive, often leading to various side effects, including adverse effects on the natural human microbiome. At the same time, the development of novel antibiotics is lagging with very few new ones in the pipeline. Finding viable alternatives to treat such infections may help to overcome these therapeutic issues. This publication brings novel developments in the field of bacterial resistance, mainly in the hospital settings, adequate antibiotic therapy, and identification of compounds useful to battle this growing issue.

Keywords

VRE --- GIT --- hemato-oncological patients --- clonality --- antibiotic stewardship --- resistance --- consumption of antibiotics --- clonal spread --- Enterococcus faecium --- Enterococcus faecalis --- linezolid resistance --- 23S rRNA --- optrA --- carbapenem-resistant Klebsiella pneumoniae --- carbapenem-resistant Acinetobacter baumannii --- N-acetylcysteine --- septic shock --- critically ill patients --- newborn --- infection --- bacteria --- antibiotic therapy --- hops --- C. difficile --- rat model --- Staphylococcus aureus --- MRSA --- spa typing --- MLST --- SCCmec typing --- clonal analysis --- epidemiology --- cancer patients --- duration of treatment --- colistin --- propensity score analysis --- multidrug-resistant Acinetobacter baumannii --- urinary tract infections --- UTIs --- MDR --- Escherichia coli --- Klebsiella --- uropathogens --- AMR --- antibiotic resistance --- ESBL-producing Klebsiella pneumoniae --- urinary tract infection --- clinical impact --- economic impact --- ventilator-associated pneumonia --- Klebsiella spp. --- Escherichia spp. --- pulsed-field gel electrophoresis (PFGE) --- endogenous infection --- methicillin-resistant --- porcine model --- methicillin-resistant Staphylococcus aureus (MRSA) --- long term care facilities (LTCF) --- multidrug resistance (MDR) --- enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) --- ESBL --- PCR --- primer --- antimicrobial resistance --- infection prevention and control --- antimicrobial stewardship --- hospital --- cluster analysis --- principal component analysis


Book
Hospital Acquired Infections, Multidrug Resistant (MDR) Bacteria, Alternative Approaches to Antibiotic Therapy
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacterial resistance to known and currently used antibiotics represents a growing issue worldwide. It poses a major problem in the treatment of infectious diseases in general and hospital-acquired infections in particular. This is in part due to the overuse and misuse of antibiotics in past decades, which led to the selection of highly resistant bacteria and even so-called superbugs – multidrug-resistant (MDR) bacteria. Nosocomial infections, particularly, are often caused by MDR bacterial pathogens and the treatment of such infections is very complicated and extensive, often leading to various side effects, including adverse effects on the natural human microbiome. At the same time, the development of novel antibiotics is lagging with very few new ones in the pipeline. Finding viable alternatives to treat such infections may help to overcome these therapeutic issues. This publication brings novel developments in the field of bacterial resistance, mainly in the hospital settings, adequate antibiotic therapy, and identification of compounds useful to battle this growing issue.

Keywords

Medicine --- Epidemiology & medical statistics --- VRE --- GIT --- hemato-oncological patients --- clonality --- antibiotic stewardship --- resistance --- consumption of antibiotics --- clonal spread --- Enterococcus faecium --- Enterococcus faecalis --- linezolid resistance --- 23S rRNA --- optrA --- carbapenem-resistant Klebsiella pneumoniae --- carbapenem-resistant Acinetobacter baumannii --- N-acetylcysteine --- septic shock --- critically ill patients --- newborn --- infection --- bacteria --- antibiotic therapy --- hops --- C. difficile --- rat model --- Staphylococcus aureus --- MRSA --- spa typing --- MLST --- SCCmec typing --- clonal analysis --- epidemiology --- cancer patients --- duration of treatment --- colistin --- propensity score analysis --- multidrug-resistant Acinetobacter baumannii --- urinary tract infections --- UTIs --- MDR --- Escherichia coli --- Klebsiella --- uropathogens --- AMR --- antibiotic resistance --- ESBL-producing Klebsiella pneumoniae --- urinary tract infection --- clinical impact --- economic impact --- ventilator-associated pneumonia --- Klebsiella spp. --- Escherichia spp. --- pulsed-field gel electrophoresis (PFGE) --- endogenous infection --- methicillin-resistant --- porcine model --- methicillin-resistant Staphylococcus aureus (MRSA) --- long term care facilities (LTCF) --- multidrug resistance (MDR) --- enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) --- ESBL --- PCR --- primer --- antimicrobial resistance --- infection prevention and control --- antimicrobial stewardship --- hospital --- cluster analysis --- principal component analysis --- VRE --- GIT --- hemato-oncological patients --- clonality --- antibiotic stewardship --- resistance --- consumption of antibiotics --- clonal spread --- Enterococcus faecium --- Enterococcus faecalis --- linezolid resistance --- 23S rRNA --- optrA --- carbapenem-resistant Klebsiella pneumoniae --- carbapenem-resistant Acinetobacter baumannii --- N-acetylcysteine --- septic shock --- critically ill patients --- newborn --- infection --- bacteria --- antibiotic therapy --- hops --- C. difficile --- rat model --- Staphylococcus aureus --- MRSA --- spa typing --- MLST --- SCCmec typing --- clonal analysis --- epidemiology --- cancer patients --- duration of treatment --- colistin --- propensity score analysis --- multidrug-resistant Acinetobacter baumannii --- urinary tract infections --- UTIs --- MDR --- Escherichia coli --- Klebsiella --- uropathogens --- AMR --- antibiotic resistance --- ESBL-producing Klebsiella pneumoniae --- urinary tract infection --- clinical impact --- economic impact --- ventilator-associated pneumonia --- Klebsiella spp. --- Escherichia spp. --- pulsed-field gel electrophoresis (PFGE) --- endogenous infection --- methicillin-resistant --- porcine model --- methicillin-resistant Staphylococcus aureus (MRSA) --- long term care facilities (LTCF) --- multidrug resistance (MDR) --- enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) --- ESBL --- PCR --- primer --- antimicrobial resistance --- infection prevention and control --- antimicrobial stewardship --- hospital --- cluster analysis --- principal component analysis


Book
Antimicrobial Resistance and Virulence - 2nd Volume
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The worldwide dissemination of antimicrobial-resistant bacteria, particularly those resistant to last-resource antibiotics, is a common problem to which no immediate solution is foreseen. In 2017, the World Health Organization (WHO) published a list of antimicrobial-resistant "priority pathogens", which include a group of microorganisms with high-level resistance to multiple drugs, named ESKAPE pathogens, comprising vancomycin-resistant Enterococcus faecium (VRE), methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA), extended spectrum β-lactamase (ESBL) or carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa and extended spectrum β-lactamase (ESBL) or carbapenem-resistant Enterobacter spp. These bacteria also have the ability to produce several virulence factors, which have a major influence on the outcomes of infectious diseases. Bacterial resistance and virulence are interrelated, since antibiotics pressure may influence bacterial virulence gene expression and, consequently, infection pathogenesis. Additionally, some virulence factors contribute to an increased resistance ability, as observed in biofilm-producing strains. The surveillance of important resistant and virulent clones and associated mobile genetic elements is essential to decision making in terms of mitigation measures to be applied for the prevention of such infections in both human and veterinary medicine, being also relevant to address the role of natural environments as important components of the dissemination cycle of these strains.


Book
Antimicrobial Resistance and Virulence - 2nd Volume
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The worldwide dissemination of antimicrobial-resistant bacteria, particularly those resistant to last-resource antibiotics, is a common problem to which no immediate solution is foreseen. In 2017, the World Health Organization (WHO) published a list of antimicrobial-resistant "priority pathogens", which include a group of microorganisms with high-level resistance to multiple drugs, named ESKAPE pathogens, comprising vancomycin-resistant Enterococcus faecium (VRE), methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA), extended spectrum β-lactamase (ESBL) or carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa and extended spectrum β-lactamase (ESBL) or carbapenem-resistant Enterobacter spp. These bacteria also have the ability to produce several virulence factors, which have a major influence on the outcomes of infectious diseases. Bacterial resistance and virulence are interrelated, since antibiotics pressure may influence bacterial virulence gene expression and, consequently, infection pathogenesis. Additionally, some virulence factors contribute to an increased resistance ability, as observed in biofilm-producing strains. The surveillance of important resistant and virulent clones and associated mobile genetic elements is essential to decision making in terms of mitigation measures to be applied for the prevention of such infections in both human and veterinary medicine, being also relevant to address the role of natural environments as important components of the dissemination cycle of these strains.


Book
Genomics of Bacterial Metal Resistance
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The importance of understanding metal–microbe interactions underlies a number of social–economic issues in the world. The antimicrobial resistance era has created a need for novel antimicrobials and within this fieldm metal and metalloid ions are promising solutions. Pollution sites, either co-contaminated with metals or with metals as the sole pollutant, contain microbes that are present as key participants, with both of these issues habing links to agriculture. Microbes also play key roles in the global geochemical cycle of many elements. Such statements solidify the need to understand metal–microbe interactions. Given that genomics has arguably become the most useful tool in biology, the application of this technology within the field of understanding metal resistance comes as no surprise. Whilst by no means comprehensive, this book provides examples of the applications of genomic approaches in the study of metal–microbe interactions. Here, we present a collection of manuscripts that highlights some present directions in the field. The book starts with a collection of three papers evaluating aspects of the genomics of the archetype metal resistant bacteria, Cuprividus metallidurans. This is followed by four studies that evaluate the mechanisms of metal resistance. The next two papers assess metal resistance in agricultural related situations, including a review on metal resistance in Listeria. The book concludes with a review on metal phytoremediation via Rhizobia and two subsequent studies of metal biotechnology relevance.

Keywords

Research & information: general --- Biology, life sciences --- silver --- silver toxicity --- silver resistance --- Keio collection --- Escherichia coli --- antimicrobials --- Acidithiobacillus ferrooxidans --- copper resistance --- biomining --- envelope components --- proteomics --- lipopolysaccharide --- genomic island --- integrase --- Acinetobacter baumannii --- mobile genetic element --- Ensifer (Sinorhizobium) sp. M14 --- arsenic-oxidizing bacteria --- heavy metal resistance --- draft genome sequence --- comparative genomic analysis --- biosafety --- biotechnology for arsenic removal --- adsorption --- water treatment --- in situ (bio)remediation --- copper --- resistance --- swine --- phenotype microarray --- mobile genetic elements --- Cupriavidus --- metal --- soil bioremediation --- heavy-metals --- serpentine soils --- serpentine vegetation --- genome manipulation --- cis-hybrid strains --- heavy metals --- genomic islands --- genomic rearrangements --- metal resistance genes --- Mucilaginibacer rubeus --- Mucilaginibacter kameinonensis --- evolution --- CTnDOT --- Listeria monocytogenes --- cadmium --- arsenic --- gallium --- antimicrobial agents --- metal toxicity --- metal resistance --- metal-based antimicrobials --- platinum resistance --- RNA-Seq --- multireplicon --- Nanopore --- adaptive laboratory evolution --- silver --- silver toxicity --- silver resistance --- Keio collection --- Escherichia coli --- antimicrobials --- Acidithiobacillus ferrooxidans --- copper resistance --- biomining --- envelope components --- proteomics --- lipopolysaccharide --- genomic island --- integrase --- Acinetobacter baumannii --- mobile genetic element --- Ensifer (Sinorhizobium) sp. M14 --- arsenic-oxidizing bacteria --- heavy metal resistance --- draft genome sequence --- comparative genomic analysis --- biosafety --- biotechnology for arsenic removal --- adsorption --- water treatment --- in situ (bio)remediation --- copper --- resistance --- swine --- phenotype microarray --- mobile genetic elements --- Cupriavidus --- metal --- soil bioremediation --- heavy-metals --- serpentine soils --- serpentine vegetation --- genome manipulation --- cis-hybrid strains --- heavy metals --- genomic islands --- genomic rearrangements --- metal resistance genes --- Mucilaginibacer rubeus --- Mucilaginibacter kameinonensis --- evolution --- CTnDOT --- Listeria monocytogenes --- cadmium --- arsenic --- gallium --- antimicrobial agents --- metal toxicity --- metal resistance --- metal-based antimicrobials --- platinum resistance --- RNA-Seq --- multireplicon --- Nanopore --- adaptive laboratory evolution


Book
Antimicrobial Resistance and Virulence - 2nd Volume
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The worldwide dissemination of antimicrobial-resistant bacteria, particularly those resistant to last-resource antibiotics, is a common problem to which no immediate solution is foreseen. In 2017, the World Health Organization (WHO) published a list of antimicrobial-resistant "priority pathogens", which include a group of microorganisms with high-level resistance to multiple drugs, named ESKAPE pathogens, comprising vancomycin-resistant Enterococcus faecium (VRE), methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA), extended spectrum β-lactamase (ESBL) or carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa and extended spectrum β-lactamase (ESBL) or carbapenem-resistant Enterobacter spp. These bacteria also have the ability to produce several virulence factors, which have a major influence on the outcomes of infectious diseases. Bacterial resistance and virulence are interrelated, since antibiotics pressure may influence bacterial virulence gene expression and, consequently, infection pathogenesis. Additionally, some virulence factors contribute to an increased resistance ability, as observed in biofilm-producing strains. The surveillance of important resistant and virulent clones and associated mobile genetic elements is essential to decision making in terms of mitigation measures to be applied for the prevention of such infections in both human and veterinary medicine, being also relevant to address the role of natural environments as important components of the dissemination cycle of these strains.

Keywords

Research & information: general --- Biology, life sciences --- Microbiology (non-medical) --- biocide --- antibiotic resistance --- cross-resistance --- aminoglycoside --- adaptation --- biofilm --- pyruvate cycle --- mastitis --- staphylococci --- virulence factors --- genes --- antimicrobial resistance --- infant --- newborn --- bacteremia --- Gram-negative bacteria --- drug resistance --- microbial --- mortality --- microcosm --- Aeromonas --- climate change --- temperature --- pH --- water --- Acinetobacter baumannii --- virulence --- whole-genome sequencing --- international high-risk clones --- genomic epidemiology --- dogs --- Escherichia coli --- ESBL --- CTX-M-15 --- CTX-M-1 --- CTX-M-32 --- CTX-M-55 --- CTX-M-14 --- qAmpC --- CMY-2 --- camel --- domestic --- milk --- virulence genes --- extended-spectrum β-lactamases --- biofilm formation --- Pseudomonas aeruginosa --- carbapenem resistance --- KPC-2 --- plasmid --- diabetic foot infections --- Staphylococcus aureus --- subinhibitory concentrations --- virulence-related genes --- biocide --- antibiotic resistance --- cross-resistance --- aminoglycoside --- adaptation --- biofilm --- pyruvate cycle --- mastitis --- staphylococci --- virulence factors --- genes --- antimicrobial resistance --- infant --- newborn --- bacteremia --- Gram-negative bacteria --- drug resistance --- microbial --- mortality --- microcosm --- Aeromonas --- climate change --- temperature --- pH --- water --- Acinetobacter baumannii --- virulence --- whole-genome sequencing --- international high-risk clones --- genomic epidemiology --- dogs --- Escherichia coli --- ESBL --- CTX-M-15 --- CTX-M-1 --- CTX-M-32 --- CTX-M-55 --- CTX-M-14 --- qAmpC --- CMY-2 --- camel --- domestic --- milk --- virulence genes --- extended-spectrum β-lactamases --- biofilm formation --- Pseudomonas aeruginosa --- carbapenem resistance --- KPC-2 --- plasmid --- diabetic foot infections --- Staphylococcus aureus --- subinhibitory concentrations --- virulence-related genes


Book
New Insights on Biofilm Antimicrobial Strategies
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the last few decades, the study of microbial biofilms has been gaining interest among the scientific community. These microbial communities comprise cells adhered to surfaces that are surrounded by a self-produced exopolymeric matrix that protects biofilm cells against different external stresses. Biofilms can have a negative impact on different sectors within society, namely in agriculture, food industries, and veterinary and human health. As a consequence of their metabolic state and matrix protection, biofilm cells are very difficult to tackle with antibiotics or chemical disinfectants. Due to this problem, recent advances in the development of antibiotic alternatives or complementary strategies to prevent or control biofilms have been reported. This book includes different strategies to prevent biofilm formation or to control biofilm development and includes full research articles, reviews, a communication, and a perspective.

Keywords

Technology: general issues --- antibiofilm --- antimicrobial agent --- bacteria --- fungi --- polymicrobial biofilm --- microalga --- free fatty acids --- encapsulation --- biofilm --- chronic wounds --- host response --- S100A8/A9 --- dental plaque --- quorum sensing --- microbial resistance --- bacterial adhesion --- blocking effect --- hydrodynamics --- parallel plate flow cell --- carbon nanotubes --- poly(dimethylsiloxane) --- adhesion --- Escherichia coli --- Biofilm --- Public Engagement --- Outreach --- Control Strategies --- Oral Biofilm --- TiO2 nanofibers --- electrospinning --- biofilm prevention and control --- multidrug-resistant bacteria --- biomedical application --- biofilms --- biofilm inhibition --- dental implants --- peri-implantitis --- polyether-ether-ketone --- Pseudomonas aeruginosa --- Candida albicans --- mixed-species biofilm analysis --- flow cytometry --- bacteriophage therapy --- prosthesis related infections --- hardware infections --- left ventricular assist devices --- Acinetobacter baumannii --- antibiotic resistance --- antibiotic tolerance --- persister --- intraspecies community --- EPS matrix --- peptide nucleic acid-fluorescence in situ hybridization --- urinary tract infections --- catheter-associated urinary tract infections --- confocal laser scanning microscopy --- recalcitrance --- biofilm control --- Klebsiella pneumoniae --- KPC and OXA-48-like carbapenemases --- Galleria mellonella infection model --- linear oligoethyleneimine hydrochloride --- bacteriophage --- endotracheal tube --- n/a


Book
Chemical Composition and Biological Activities of Essential Oils
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Essential oils extracted by the distillation or hydrodistillation of aromatic plants are a complex mixture of volatile compounds with several biological activities. Their efficacy as antimicrobial agents is related to the activity of several natural compounds belonging to different chemical families that can act both in synergy with each other and with other antibiotics. The antibiotic resistance detected among pathogens has been quickly increasing in recent years, and the control of some of these microorganisms is becoming a planetary emergency for human and animal health. The control of the microbial growth is a problem of great importance also for the food industry (food deterioration and shelf life extension) and for the world of cultural heritage (indoor and outdoor phenomena of biodeterioration). Essential oils can play an important role in this scenario, due their recognized broad-spectrum antimicrobial activity. Therefore, the main subject of this Special Issue includes an essential oil-based approach to control microrganisms in areas such as human and veterinary medicine, entomology, food industry and agriculture. In addition, the chemical composition of essential oils from endemic and rare medicinal/aromatic plants, nanoformulations of essential oils, applications in human and veterinary medicine and its use as animal feeding supplements are topics covered in this Special Issue


Book
Genomics of Bacterial Metal Resistance
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The importance of understanding metal–microbe interactions underlies a number of social–economic issues in the world. The antimicrobial resistance era has created a need for novel antimicrobials and within this fieldm metal and metalloid ions are promising solutions. Pollution sites, either co-contaminated with metals or with metals as the sole pollutant, contain microbes that are present as key participants, with both of these issues habing links to agriculture. Microbes also play key roles in the global geochemical cycle of many elements. Such statements solidify the need to understand metal–microbe interactions. Given that genomics has arguably become the most useful tool in biology, the application of this technology within the field of understanding metal resistance comes as no surprise. Whilst by no means comprehensive, this book provides examples of the applications of genomic approaches in the study of metal–microbe interactions. Here, we present a collection of manuscripts that highlights some present directions in the field. The book starts with a collection of three papers evaluating aspects of the genomics of the archetype metal resistant bacteria, Cuprividus metallidurans. This is followed by four studies that evaluate the mechanisms of metal resistance. The next two papers assess metal resistance in agricultural related situations, including a review on metal resistance in Listeria. The book concludes with a review on metal phytoremediation via Rhizobia and two subsequent studies of metal biotechnology relevance.

Listing 1 - 10 of 20 << page
of 2
>>
Sort by