Narrow your search
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Mitochondrial Transport Proteins
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondrial transporters are membrane-inserted proteins which provide a link between metabolic reactions occurring within the mitochondrial matrix and outside the organelles by catalyzing the translocation of numerous solutes across the mitochondrial membrane. They include the mitochondrial carrier family members, the proteins involved in pyruvate transport, ABC transporters and channels, and are, therefore, essential for many biological processes and cell homeostasis. Identification and functional studies of many mitochondrial transporters have been performed over the years using both in vitro and in vivo systems. The few recently solved structures of these transporters have paved the way for further investigations. Furthermore, alterations in their function are responsible for several diseases.

Keywords

Research & information: general --- Biology, life sciences --- hypoxia --- resistance to hypoxia --- mitochondria --- mitochondrial calcium transport --- mitochondrial calcium uniporter complex --- mitochondrial Ca2+-induced permeability transition pore --- cyclophilin D --- ATP synthase --- disease --- error of metabolism --- mitochondrial carrier --- mitochondrial carrier disease --- mitochondrial disease --- mitochondrial transporter --- membrane transport --- mutation --- SLC25. --- mitochondrial permeability transition --- apoptosis --- necrosis --- ischemia/reperfusion --- cancer --- neurodegeneration --- cyclosporin A --- metabolite transport --- mitochondrial pyruvate carrier --- sideroflexin --- TOM --- TIM chaperones --- TIM22 --- protein translocation --- mitochondrial biogenesis --- amino acid --- biological function --- ion --- inner mitochondrial membrane --- mitochondrial carrier family --- organic acid --- substrate specificity --- transport mechanism --- vitamin --- USMG5/DAPIT --- glucose-stimulated insulin secretion --- glucose-induced expression --- membrane subunits of ATP synthase --- ATP synthase oligomers mitochondrial cristae morphology --- metabolism --- metabolic disorders --- adult-onset type II citrullinemia (CTLN2) --- aspartate/glutamate carrier (AGC) --- animal model --- argininosuccinate synthetase (ASS) --- aversion to carbohydrates --- citrin --- food taste --- neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) --- protein–protein interaction --- MPC --- lifespan --- pyruvate metabolism --- mitochondrial transport --- peroxisomes --- carrier --- cofactor --- ABC transporter --- aquaporin --- ion channels --- potassium channels --- ATP --- calcium --- ROS --- potassium channel openers --- MCF --- function --- plant metabolism --- plant development --- diseases --- VDAC1 --- virus --- pancreatic islets --- β-cell --- diabetes --- glucotoxicity --- glucolipotoxicity --- lipotoxicity --- mitochondrial carriers --- SLC transporters --- SLC25 --- SLC54 --- SLC55 --- LETM --- SLC56 --- sequence analysis --- protein targeting --- Voltage-Dependent Anion selective Channel --- isoforms --- oxidative post-translational modification --- gene promoter --- yeast --- bioenergetics --- SLC25A1 --- CIC --- CTP --- citrate --- inflammation --- 22.q11.2 --- NAFLD/NASH --- carnitine --- carnitine acyl-carnitine carrier --- carnitine acyl-carnitine translocase --- post-translational modification --- solute carrier family 25 --- SLC25A20 --- MCU --- mitochondrial Ca2+ uniporter --- Ca2+ signaling --- mitochondrial metabolism --- skeletal muscle mitochondria --- SLC25A51 --- NAD+ transporters --- NAD --- electrophysiology --- ATP-dependent potassium channel


Book
Mitochondrial Transport Proteins
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondrial transporters are membrane-inserted proteins which provide a link between metabolic reactions occurring within the mitochondrial matrix and outside the organelles by catalyzing the translocation of numerous solutes across the mitochondrial membrane. They include the mitochondrial carrier family members, the proteins involved in pyruvate transport, ABC transporters and channels, and are, therefore, essential for many biological processes and cell homeostasis. Identification and functional studies of many mitochondrial transporters have been performed over the years using both in vitro and in vivo systems. The few recently solved structures of these transporters have paved the way for further investigations. Furthermore, alterations in their function are responsible for several diseases.

Keywords

hypoxia --- resistance to hypoxia --- mitochondria --- mitochondrial calcium transport --- mitochondrial calcium uniporter complex --- mitochondrial Ca2+-induced permeability transition pore --- cyclophilin D --- ATP synthase --- disease --- error of metabolism --- mitochondrial carrier --- mitochondrial carrier disease --- mitochondrial disease --- mitochondrial transporter --- membrane transport --- mutation --- SLC25. --- mitochondrial permeability transition --- apoptosis --- necrosis --- ischemia/reperfusion --- cancer --- neurodegeneration --- cyclosporin A --- metabolite transport --- mitochondrial pyruvate carrier --- sideroflexin --- TOM --- TIM chaperones --- TIM22 --- protein translocation --- mitochondrial biogenesis --- amino acid --- biological function --- ion --- inner mitochondrial membrane --- mitochondrial carrier family --- organic acid --- substrate specificity --- transport mechanism --- vitamin --- USMG5/DAPIT --- glucose-stimulated insulin secretion --- glucose-induced expression --- membrane subunits of ATP synthase --- ATP synthase oligomers mitochondrial cristae morphology --- metabolism --- metabolic disorders --- adult-onset type II citrullinemia (CTLN2) --- aspartate/glutamate carrier (AGC) --- animal model --- argininosuccinate synthetase (ASS) --- aversion to carbohydrates --- citrin --- food taste --- neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) --- protein–protein interaction --- MPC --- lifespan --- pyruvate metabolism --- mitochondrial transport --- peroxisomes --- carrier --- cofactor --- ABC transporter --- aquaporin --- ion channels --- potassium channels --- ATP --- calcium --- ROS --- potassium channel openers --- MCF --- function --- plant metabolism --- plant development --- diseases --- VDAC1 --- virus --- pancreatic islets --- β-cell --- diabetes --- glucotoxicity --- glucolipotoxicity --- lipotoxicity --- mitochondrial carriers --- SLC transporters --- SLC25 --- SLC54 --- SLC55 --- LETM --- SLC56 --- sequence analysis --- protein targeting --- Voltage-Dependent Anion selective Channel --- isoforms --- oxidative post-translational modification --- gene promoter --- yeast --- bioenergetics --- SLC25A1 --- CIC --- CTP --- citrate --- inflammation --- 22.q11.2 --- NAFLD/NASH --- carnitine --- carnitine acyl-carnitine carrier --- carnitine acyl-carnitine translocase --- post-translational modification --- solute carrier family 25 --- SLC25A20 --- MCU --- mitochondrial Ca2+ uniporter --- Ca2+ signaling --- mitochondrial metabolism --- skeletal muscle mitochondria --- SLC25A51 --- NAD+ transporters --- NAD --- electrophysiology --- ATP-dependent potassium channel


Book
Mitochondrial Transport Proteins
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondrial transporters are membrane-inserted proteins which provide a link between metabolic reactions occurring within the mitochondrial matrix and outside the organelles by catalyzing the translocation of numerous solutes across the mitochondrial membrane. They include the mitochondrial carrier family members, the proteins involved in pyruvate transport, ABC transporters and channels, and are, therefore, essential for many biological processes and cell homeostasis. Identification and functional studies of many mitochondrial transporters have been performed over the years using both in vitro and in vivo systems. The few recently solved structures of these transporters have paved the way for further investigations. Furthermore, alterations in their function are responsible for several diseases.

Keywords

Research & information: general --- Biology, life sciences --- hypoxia --- resistance to hypoxia --- mitochondria --- mitochondrial calcium transport --- mitochondrial calcium uniporter complex --- mitochondrial Ca2+-induced permeability transition pore --- cyclophilin D --- ATP synthase --- disease --- error of metabolism --- mitochondrial carrier --- mitochondrial carrier disease --- mitochondrial disease --- mitochondrial transporter --- membrane transport --- mutation --- SLC25. --- mitochondrial permeability transition --- apoptosis --- necrosis --- ischemia/reperfusion --- cancer --- neurodegeneration --- cyclosporin A --- metabolite transport --- mitochondrial pyruvate carrier --- sideroflexin --- TOM --- TIM chaperones --- TIM22 --- protein translocation --- mitochondrial biogenesis --- amino acid --- biological function --- ion --- inner mitochondrial membrane --- mitochondrial carrier family --- organic acid --- substrate specificity --- transport mechanism --- vitamin --- USMG5/DAPIT --- glucose-stimulated insulin secretion --- glucose-induced expression --- membrane subunits of ATP synthase --- ATP synthase oligomers mitochondrial cristae morphology --- metabolism --- metabolic disorders --- adult-onset type II citrullinemia (CTLN2) --- aspartate/glutamate carrier (AGC) --- animal model --- argininosuccinate synthetase (ASS) --- aversion to carbohydrates --- citrin --- food taste --- neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) --- protein–protein interaction --- MPC --- lifespan --- pyruvate metabolism --- mitochondrial transport --- peroxisomes --- carrier --- cofactor --- ABC transporter --- aquaporin --- ion channels --- potassium channels --- ATP --- calcium --- ROS --- potassium channel openers --- MCF --- function --- plant metabolism --- plant development --- diseases --- VDAC1 --- virus --- pancreatic islets --- β-cell --- diabetes --- glucotoxicity --- glucolipotoxicity --- lipotoxicity --- mitochondrial carriers --- SLC transporters --- SLC25 --- SLC54 --- SLC55 --- LETM --- SLC56 --- sequence analysis --- protein targeting --- Voltage-Dependent Anion selective Channel --- isoforms --- oxidative post-translational modification --- gene promoter --- yeast --- bioenergetics --- SLC25A1 --- CIC --- CTP --- citrate --- inflammation --- 22.q11.2 --- NAFLD/NASH --- carnitine --- carnitine acyl-carnitine carrier --- carnitine acyl-carnitine translocase --- post-translational modification --- solute carrier family 25 --- SLC25A20 --- MCU --- mitochondrial Ca2+ uniporter --- Ca2+ signaling --- mitochondrial metabolism --- skeletal muscle mitochondria --- SLC25A51 --- NAD+ transporters --- NAD --- electrophysiology --- ATP-dependent potassium channel --- hypoxia --- resistance to hypoxia --- mitochondria --- mitochondrial calcium transport --- mitochondrial calcium uniporter complex --- mitochondrial Ca2+-induced permeability transition pore --- cyclophilin D --- ATP synthase --- disease --- error of metabolism --- mitochondrial carrier --- mitochondrial carrier disease --- mitochondrial disease --- mitochondrial transporter --- membrane transport --- mutation --- SLC25. --- mitochondrial permeability transition --- apoptosis --- necrosis --- ischemia/reperfusion --- cancer --- neurodegeneration --- cyclosporin A --- metabolite transport --- mitochondrial pyruvate carrier --- sideroflexin --- TOM --- TIM chaperones --- TIM22 --- protein translocation --- mitochondrial biogenesis --- amino acid --- biological function --- ion --- inner mitochondrial membrane --- mitochondrial carrier family --- organic acid --- substrate specificity --- transport mechanism --- vitamin --- USMG5/DAPIT --- glucose-stimulated insulin secretion --- glucose-induced expression --- membrane subunits of ATP synthase --- ATP synthase oligomers mitochondrial cristae morphology --- metabolism --- metabolic disorders --- adult-onset type II citrullinemia (CTLN2) --- aspartate/glutamate carrier (AGC) --- animal model --- argininosuccinate synthetase (ASS) --- aversion to carbohydrates --- citrin --- food taste --- neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) --- protein–protein interaction --- MPC --- lifespan --- pyruvate metabolism --- mitochondrial transport --- peroxisomes --- carrier --- cofactor --- ABC transporter --- aquaporin --- ion channels --- potassium channels --- ATP --- calcium --- ROS --- potassium channel openers --- MCF --- function --- plant metabolism --- plant development --- diseases --- VDAC1 --- virus --- pancreatic islets --- β-cell --- diabetes --- glucotoxicity --- glucolipotoxicity --- lipotoxicity --- mitochondrial carriers --- SLC transporters --- SLC25 --- SLC54 --- SLC55 --- LETM --- SLC56 --- sequence analysis --- protein targeting --- Voltage-Dependent Anion selective Channel --- isoforms --- oxidative post-translational modification --- gene promoter --- yeast --- bioenergetics --- SLC25A1 --- CIC --- CTP --- citrate --- inflammation --- 22.q11.2 --- NAFLD/NASH --- carnitine --- carnitine acyl-carnitine carrier --- carnitine acyl-carnitine translocase --- post-translational modification --- solute carrier family 25 --- SLC25A20 --- MCU --- mitochondrial Ca2+ uniporter --- Ca2+ signaling --- mitochondrial metabolism --- skeletal muscle mitochondria --- SLC25A51 --- NAD+ transporters --- NAD --- electrophysiology --- ATP-dependent potassium channel


Book
Impaired Mitochondrial Bioenergetics under Pathological Conditions
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondria are the powerhouses of cells; however, mitochondrial dysfunction causes energy depletion and cell death in a variety of diseases. Altered oxidative phosphorylation and ion homeostasis are associated with ROS production resulting from the disassembly of respiratory supercomplexes and the disruption of electron transfer chains. In pathological conditions, the dysregulation of mitochondrial homeostasis promotes Ca2+ overload in the matrix and ROS accumulation, which induces the mitochondrial permeability transition pore formation responsible for mitochondrial morphological changes linked to membrane dynamics, and ultimately, cell death. Finally, studies on the impaired mitochondrial bioenergetics in pathology could provide molecular tools to counteract diseases associated with mitochondrial dysfunction.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- aging heart --- Bcl-2 family --- mitochondria --- programmed cell death --- fatty acid oxidation --- palmitate --- oleate --- m.3243A&gt --- G mutation --- MT-ATP6 --- m.8909T&gt --- C --- ATP synthase --- nephropathy --- oxidative phosphorylation --- mitochondrial disease --- cardiolipin --- Barth syndrome --- Sengers syndrome --- respiratory chain --- Dilated Cardiomyopathy with Ataxia --- cardiomyopathy --- mammalian complex I --- NADH dehydrogenase --- complex I assembly --- complex I structure --- complex I deficiency --- supernumerary subunits --- electron transport chain --- mitochondrial dysfunction --- Leigh syndrome --- mitochondrial diseases --- yeast --- Saccharomyces cerevisiae --- pet mutants --- pancreatic endocrine cells --- mathematical model --- cellular bioenergetics --- diabetes --- glucagon --- insulin --- exercise --- immune system --- metabolic disease --- COVID-19 --- mitochondrial dynamics --- viral infections --- MAVS --- RIG-I --- MDA5 --- innate immune response --- SARS CoV-2 --- RSV --- influenza --- respiratory supercomplexes --- ROS --- ATP synthase/hydrolase --- mitochondrial permeability transition pore --- cristae --- cellular signaling --- human disease --- mitochondrial dynamic --- cell signaling --- cancer --- respiratory complexes --- oxidative stress --- mitochondrial DNA --- MTCYB mutations --- cytochrome b --- complex III --- aging --- energy metabolism --- entorhinal cortex --- lipoxidation-derived damage --- neurodegeneration --- oxidative damage --- protein import --- respiratory complex assembly --- supercomplexes --- mitochondrial proteostasis --- heart failure --- bioenergetics --- assembly factor --- atypical myopathy --- high-resolution respirometry --- toxicity assays --- cell culture --- equine primary myoblasts --- fibroblasts --- frozen tissue --- leukocytes --- oxygen consumption --- platelets --- respirometry --- skeletal muscle --- aging heart --- Bcl-2 family --- mitochondria --- programmed cell death --- fatty acid oxidation --- palmitate --- oleate --- m.3243A&gt --- G mutation --- MT-ATP6 --- m.8909T&gt --- C --- ATP synthase --- nephropathy --- oxidative phosphorylation --- mitochondrial disease --- cardiolipin --- Barth syndrome --- Sengers syndrome --- respiratory chain --- Dilated Cardiomyopathy with Ataxia --- cardiomyopathy --- mammalian complex I --- NADH dehydrogenase --- complex I assembly --- complex I structure --- complex I deficiency --- supernumerary subunits --- electron transport chain --- mitochondrial dysfunction --- Leigh syndrome --- mitochondrial diseases --- yeast --- Saccharomyces cerevisiae --- pet mutants --- pancreatic endocrine cells --- mathematical model --- cellular bioenergetics --- diabetes --- glucagon --- insulin --- exercise --- immune system --- metabolic disease --- COVID-19 --- mitochondrial dynamics --- viral infections --- MAVS --- RIG-I --- MDA5 --- innate immune response --- SARS CoV-2 --- RSV --- influenza --- respiratory supercomplexes --- ROS --- ATP synthase/hydrolase --- mitochondrial permeability transition pore --- cristae --- cellular signaling --- human disease --- mitochondrial dynamic --- cell signaling --- cancer --- respiratory complexes --- oxidative stress --- mitochondrial DNA --- MTCYB mutations --- cytochrome b --- complex III --- aging --- energy metabolism --- entorhinal cortex --- lipoxidation-derived damage --- neurodegeneration --- oxidative damage --- protein import --- respiratory complex assembly --- supercomplexes --- mitochondrial proteostasis --- heart failure --- bioenergetics --- assembly factor --- atypical myopathy --- high-resolution respirometry --- toxicity assays --- cell culture --- equine primary myoblasts --- fibroblasts --- frozen tissue --- leukocytes --- oxygen consumption --- platelets --- respirometry --- skeletal muscle


Book
Impaired Mitochondrial Bioenergetics under Pathological Conditions
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondria are the powerhouses of cells; however, mitochondrial dysfunction causes energy depletion and cell death in a variety of diseases. Altered oxidative phosphorylation and ion homeostasis are associated with ROS production resulting from the disassembly of respiratory supercomplexes and the disruption of electron transfer chains. In pathological conditions, the dysregulation of mitochondrial homeostasis promotes Ca2+ overload in the matrix and ROS accumulation, which induces the mitochondrial permeability transition pore formation responsible for mitochondrial morphological changes linked to membrane dynamics, and ultimately, cell death. Finally, studies on the impaired mitochondrial bioenergetics in pathology could provide molecular tools to counteract diseases associated with mitochondrial dysfunction.

Keywords

aging heart --- Bcl-2 family --- mitochondria --- programmed cell death --- fatty acid oxidation --- palmitate --- oleate --- m.3243A&gt --- G mutation --- MT-ATP6 --- m.8909T&gt --- C --- ATP synthase --- nephropathy --- oxidative phosphorylation --- mitochondrial disease --- cardiolipin --- Barth syndrome --- Sengers syndrome --- respiratory chain --- Dilated Cardiomyopathy with Ataxia --- cardiomyopathy --- mammalian complex I --- NADH dehydrogenase --- complex I assembly --- complex I structure --- complex I deficiency --- supernumerary subunits --- electron transport chain --- mitochondrial dysfunction --- Leigh syndrome --- mitochondrial diseases --- yeast --- Saccharomyces cerevisiae --- pet mutants --- pancreatic endocrine cells --- mathematical model --- cellular bioenergetics --- diabetes --- glucagon --- insulin --- exercise --- immune system --- metabolic disease --- COVID-19 --- mitochondrial dynamics --- viral infections --- MAVS --- RIG-I --- MDA5 --- innate immune response --- SARS CoV-2 --- RSV --- influenza --- respiratory supercomplexes --- ROS --- ATP synthase/hydrolase --- mitochondrial permeability transition pore --- cristae --- cellular signaling --- human disease --- mitochondrial dynamic --- cell signaling --- cancer --- respiratory complexes --- oxidative stress --- mitochondrial DNA --- MTCYB mutations --- cytochrome b --- complex III --- aging --- energy metabolism --- entorhinal cortex --- lipoxidation-derived damage --- neurodegeneration --- oxidative damage --- protein import --- respiratory complex assembly --- supercomplexes --- mitochondrial proteostasis --- heart failure --- bioenergetics --- assembly factor --- atypical myopathy --- high-resolution respirometry --- toxicity assays --- cell culture --- equine primary myoblasts --- fibroblasts --- frozen tissue --- leukocytes --- oxygen consumption --- platelets --- respirometry --- skeletal muscle --- n/a

Na, K-ATPase : structure and kinetics
Authors: ---
ISBN: 0126476500 9780126476507 Year: 1979 Publisher: London ; San Diego, CA : Academic Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Enzymology --- Biological Transport --- Molecular Conformation --- Sodium-Potassium-Exchanging ATPase --- Adenosine Triphosphatase, Sodium, Potassium --- Na(+) K(+)-Transporting ATPase --- Sodium, Potassium Adenosine Triphosphatase --- ATPase, Sodium, Potassium --- Adenosinetriphosphatase, Sodium, Potassium --- Na(+)-K(+)-Exchanging ATPase --- Na(+)-K(+)-Transporting ATPase --- Potassium Pump --- Sodium Pump --- Sodium, Potassium ATPase --- Sodium, Potassium Adenosinetriphosphatase --- Sodium-Potassium Pump --- ATPase Sodium, Potassium --- ATPase, Sodium-Potassium-Exchanging --- Adenosinetriphosphatase Sodium, Potassium --- Pump, Potassium --- Pump, Sodium --- Pump, Sodium-Potassium --- Sodium Potassium Exchanging ATPase --- Sodium Potassium Pump --- Potassium Channels --- Sodium Channels --- 3D Molecular Structure --- Configuration, Molecular --- Molecular Structure, Three Dimensional --- Three Dimensional Molecular Structure --- Molecular Configuration --- 3D Molecular Structures --- Configurations, Molecular --- Conformation, Molecular --- Conformations, Molecular --- Molecular Configurations --- Molecular Conformations --- Molecular Structure, 3D --- Molecular Structures, 3D --- Structure, 3D Molecular --- Structures, 3D Molecular --- Models, Molecular --- Biologic Transport --- Transport, Biological --- Transport, Biologic --- Transport Vesicles --- Membrane Transport Proteins --- Conferences - Meetings --- Adenosine triphosphatase --- Biological transport --- Adenosinetriphosphatase --- Adenylopyrophosphatase --- ATP monophosphatase --- ATP phosphohydrolase --- ATP synthase --- ATP synthetase --- ATPase --- Phosphatases --- Congresses --- Sodium-Potassium-Exchanging ATPase. --- CELL MEMBRANE --- CONGRESSES


Book
Plant Protein and Proteome Altlas--Integrated Omics Analyses of Plants under Abiotic Stresses
Authors: --- --- --- --- --- et al.
ISBN: 3039219618 303921960X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Integrative omics of plants in response to stress conditions play more crucial roles in the post-genomic era. High-quality genomic data provide more deeper understanding of how plants to survive under environmental stresses. This book is focused on concluding the recent progress in the Protein and Proteome Atlas in plants under different stresses. It covers various aspects of plant protein ranging from agricultural proteomics, structure and function of proteins, and approaches for protein identification and quantification.

Keywords

phosphoproteomics --- GLU1 --- somatic embryogenesis --- CHA-SQ-1 --- nitrogen fertilizer --- chilling stress --- differentially abundant proteins --- ATP synthase --- photosynthetic parameters --- photosynthesis --- constitutive splicing --- phosphorylation --- Jatropha curcas --- plants under stress --- postharvest freshness --- Alternanthera philoxeroides --- rubber latex --- Millettia pinnata --- molecular and biochemical basis --- filling kernel --- drought stress --- comparative proteomic analysis --- domain --- micro-exons --- phylogeny --- phos-tagTM --- E. angustifolia --- root cell elongation --- ABA --- pollen abortion --- lncRNA --- transcriptome --- radish --- redox homeostasis --- Nelumbo nucifera --- sugar beet --- shotgun proteomics --- proteomes --- high-temperature stress --- post-genomics era --- model plant --- salt tolerance --- miRNA --- wheat --- physiological response --- stress --- visual proteome map --- transcriptional dynamics --- leaf --- maize --- Dunaliella salina --- phosphatidylinositol --- S-adenosylmethionine decarboxylase --- Gossypium hirsutum --- flavonoid biosynthesis --- phosphatase --- wood vinegar --- heat shock proteins --- silicate limitation --- purine metabolism --- natural rubber biosynthesis --- ancient genes --- cotton --- rubber grass --- abiotic stress --- heat stress --- maturation --- low-temperature stress --- molecular basis --- transcriptome sequencing --- ROS scavenging --- widely targeted metabolomics --- transdifferentiation --- seed development --- alternative splicing --- cultivars --- inositol --- salt stress --- chlorophyll fluorescence parameters --- proteome --- carbon fixation --- AGPase --- transcript-metabolite network --- molecular mechanisms --- Triticum aestivum L. --- Zea mays L. --- ROS --- label-free quantification --- woody oilseed plants --- heat-sensitive spinach variety --- MIPS --- quantitative proteomics --- regulated mechanism --- two-dimensional gel electrophoresis --- potassium --- glutathione --- Salinity stress --- integrated omics --- diatom --- ATP synthase CF1 alpha subunit (chloroplast) --- root --- proteome atlas --- brittle-2 --- mass spectrometry --- genomics --- Taraxacum kok-saghyz --- cytomorphology --- proteomics --- arbuscular mycorrhizal fungi --- signaling pathway --- proteomic --- loss-of-function mutant --- rice --- seedling --- wucai --- leaf sheath --- root and shoot --- antioxidant enzyme --- exon-intron structure diversity --- isobaric tags for relative and absolute quantitation --- regulation and metabolism --- concerted network --- drought --- heat response --- VIGS --- iTRAQ --- nitrogen use efficiency (NUE) --- stem

Listing 1 - 10 of 11 << page
of 2
>>
Sort by