Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULiège (4)

VIVES (4)

Vlaams Parlement (4)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2021 (3)

2019 (6)

Listing 1 - 9 of 9
Sort by

Book
Microwave Indices from Active and Passive Sensors for Remote Sensing Applications
Authors: ---
ISBN: 3038978213 3038978205 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices.


Book
Remote Sensing Monitoring of Land Surface Temperature (LST)
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research.


Book
Remote Sensing Monitoring of Land Surface Temperature (LST)
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research.


Book
Remote Sensing Monitoring of Land Surface Temperature (LST)
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research.


Book
Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China’s --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS–PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- n/a --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite --- South China's --- MS-PT algorithm


Book
Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China’s --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS–PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- n/a --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite --- South China's --- MS-PT algorithm


Book
Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li.
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China’s --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS–PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- n/a --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite --- South China's --- MS-PT algorithm


Book
Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li.
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China's --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS-PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite


Book
Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China's --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS-PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite

Listing 1 - 9 of 9
Sort by