Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (5)

Listing 1 - 5 of 5
Sort by

Book
Performance-Based Design in Structural Fire Engineering
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The performance-based design of structures in fire is gaining growing interest as a rational alternative to the traditionally adopted prescriptive code approach. This interest has led to its introduction in different codes and standards around the world. Although engineers widely use performance-based methods to design structural components in earthquake engineering, the adoption of such methods in fire engineering is still very limited. This Special Issue addresses this shortcoming by providing engineers with the needed knowledge and recent research activities addressing performance-based design in structural fire engineering, including the use of hotspot analysis to estimate the magnitude of risk to people and property in urban areas; simulations of the evacuation of large crowds; and the identification of fire effects on concrete, steel, and special structures.


Book
New Frontiers in Cementitious and Lime-Based Materials and Composites
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cement and lime currently are the most common binders in building materials. However, alternative materials and methods are needed to overcome the functional limitations and environmental footprint of conventional products. This Special Issue dedicated to “New frontiers in cementitious and lime-based materials and composites” gathers selected reviews and experimental articles that showcase the most recent trends in this multidisciplinary field. Authoritative contributions from all around the world provide important insights into all areas of research related to cementitious and lime-based materials and composites, spanning from structural engineering to geotechnics, including materials science and processing technology. This Topical Collection is intended to foster innovation and help researchers and developers to identify new solutions for a more sustainable and functional built environment.

Keywords

durability --- hardened properties --- green composite --- fresh properties --- recycled concrete aggregates --- natural coarse aggregates --- enzyme-induced calcite precipitation --- microbial-induced calcite precipitation --- geotechnical engineering --- geoenvironmental engineering --- precast concrete wall --- interfacial bonding strength --- joint concrete --- interface processing --- washed rough surface --- roughness --- storage time --- cement mortar --- End-of-Life Tyre --- waste --- surface treatment --- compressive strength --- flexural strength --- workability --- fly ash --- freezing shaft sinking --- shaft lining structure --- uneven pressure --- hybrid fiber-reinforced concrete --- crack --- autogenous self-healing --- curing conditions --- supplementary cementitious materials (SCMs) --- GRC-PC --- integrated wall panels --- composite method --- shrinkage properties --- dissipation energy density --- high-strength concrete --- Weibull distribution --- damage mechanics --- constitutive model --- repeated impact --- ACI 544-2R --- high temperatures --- fire --- residual strength --- lime-cement mortar --- air-entrained agent --- heritage conservation --- reconstruction and restoration of historical buildings --- properties --- mechanical --- electrical resistivity --- ecofriendly ternary concrete --- SCBA --- SF --- coastal cemented soil --- nano silica --- iron tailings --- mechanical properties --- microscopic mechanism --- granite dust --- stabilizer --- particle size --- plasticity --- unconfined compression strength --- cement --- lime --- sustainable materials --- fibre-reinforced composite --- recycled aggregates


Book
Performance-Based Design in Structural Fire Engineering
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The performance-based design of structures in fire is gaining growing interest as a rational alternative to the traditionally adopted prescriptive code approach. This interest has led to its introduction in different codes and standards around the world. Although engineers widely use performance-based methods to design structural components in earthquake engineering, the adoption of such methods in fire engineering is still very limited. This Special Issue addresses this shortcoming by providing engineers with the needed knowledge and recent research activities addressing performance-based design in structural fire engineering, including the use of hotspot analysis to estimate the magnitude of risk to people and property in urban areas; simulations of the evacuation of large crowds; and the identification of fire effects on concrete, steel, and special structures.

Keywords

Research & information: general --- Mathematics & science --- fire incidence --- hotspot analysis --- KDE --- Getis-Ord Gi* --- IDW interpolation --- fire risk zones --- built-up areas --- temporal analysis --- sustainable development --- fire --- earthquake --- finite element analysis --- Abaqus --- multi hazard analysis --- Scoria aggregate concrete --- PP fiber --- high temperature --- stress-strain curve --- prefabricated cabin-type substation --- panel --- BP neural network --- thermal–mechanical coupling --- machine learning --- fire behavior --- impact of fires --- repeated impact --- ACI 544-2R --- high temperatures --- ECC --- impact ductility --- oil and gas facility --- offshore platform --- tanker --- steel structure --- bulkhead --- deck --- hydrocarbon fire mode --- fire-resistance limit --- fire protection --- design --- stadiums and arenas --- evacuation time --- safety --- Colosseum --- organizing evacuation --- computer simulation --- City University --- fire temperature --- opening factor --- compartment area --- thermal analysis --- natural fire --- concrete strength --- exposure duration --- maximum temperature --- heating rate --- cooling rate --- reinforced concrete --- columns --- standard fire --- cooling phase --- axial capacity --- temperature-stress history --- fire incidence --- hotspot analysis --- KDE --- Getis-Ord Gi* --- IDW interpolation --- fire risk zones --- built-up areas --- temporal analysis --- sustainable development --- fire --- earthquake --- finite element analysis --- Abaqus --- multi hazard analysis --- Scoria aggregate concrete --- PP fiber --- high temperature --- stress-strain curve --- prefabricated cabin-type substation --- panel --- BP neural network --- thermal–mechanical coupling --- machine learning --- fire behavior --- impact of fires --- repeated impact --- ACI 544-2R --- high temperatures --- ECC --- impact ductility --- oil and gas facility --- offshore platform --- tanker --- steel structure --- bulkhead --- deck --- hydrocarbon fire mode --- fire-resistance limit --- fire protection --- design --- stadiums and arenas --- evacuation time --- safety --- Colosseum --- organizing evacuation --- computer simulation --- City University --- fire temperature --- opening factor --- compartment area --- thermal analysis --- natural fire --- concrete strength --- exposure duration --- maximum temperature --- heating rate --- cooling rate --- reinforced concrete --- columns --- standard fire --- cooling phase --- axial capacity --- temperature-stress history


Book
New Frontiers in Cementitious and Lime-Based Materials and Composites
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cement and lime currently are the most common binders in building materials. However, alternative materials and methods are needed to overcome the functional limitations and environmental footprint of conventional products. This Special Issue dedicated to “New frontiers in cementitious and lime-based materials and composites” gathers selected reviews and experimental articles that showcase the most recent trends in this multidisciplinary field. Authoritative contributions from all around the world provide important insights into all areas of research related to cementitious and lime-based materials and composites, spanning from structural engineering to geotechnics, including materials science and processing technology. This Topical Collection is intended to foster innovation and help researchers and developers to identify new solutions for a more sustainable and functional built environment.

Keywords

Technology: general issues --- History of engineering & technology --- durability --- hardened properties --- green composite --- fresh properties --- recycled concrete aggregates --- natural coarse aggregates --- enzyme-induced calcite precipitation --- microbial-induced calcite precipitation --- geotechnical engineering --- geoenvironmental engineering --- precast concrete wall --- interfacial bonding strength --- joint concrete --- interface processing --- washed rough surface --- roughness --- storage time --- cement mortar --- End-of-Life Tyre --- waste --- surface treatment --- compressive strength --- flexural strength --- workability --- fly ash --- freezing shaft sinking --- shaft lining structure --- uneven pressure --- hybrid fiber-reinforced concrete --- crack --- autogenous self-healing --- curing conditions --- supplementary cementitious materials (SCMs) --- GRC-PC --- integrated wall panels --- composite method --- shrinkage properties --- dissipation energy density --- high-strength concrete --- Weibull distribution --- damage mechanics --- constitutive model --- repeated impact --- ACI 544-2R --- high temperatures --- fire --- residual strength --- lime-cement mortar --- air-entrained agent --- heritage conservation --- reconstruction and restoration of historical buildings --- properties --- mechanical --- electrical resistivity --- ecofriendly ternary concrete --- SCBA --- SF --- coastal cemented soil --- nano silica --- iron tailings --- mechanical properties --- microscopic mechanism --- granite dust --- stabilizer --- particle size --- plasticity --- unconfined compression strength --- cement --- lime --- sustainable materials --- fibre-reinforced composite --- recycled aggregates --- durability --- hardened properties --- green composite --- fresh properties --- recycled concrete aggregates --- natural coarse aggregates --- enzyme-induced calcite precipitation --- microbial-induced calcite precipitation --- geotechnical engineering --- geoenvironmental engineering --- precast concrete wall --- interfacial bonding strength --- joint concrete --- interface processing --- washed rough surface --- roughness --- storage time --- cement mortar --- End-of-Life Tyre --- waste --- surface treatment --- compressive strength --- flexural strength --- workability --- fly ash --- freezing shaft sinking --- shaft lining structure --- uneven pressure --- hybrid fiber-reinforced concrete --- crack --- autogenous self-healing --- curing conditions --- supplementary cementitious materials (SCMs) --- GRC-PC --- integrated wall panels --- composite method --- shrinkage properties --- dissipation energy density --- high-strength concrete --- Weibull distribution --- damage mechanics --- constitutive model --- repeated impact --- ACI 544-2R --- high temperatures --- fire --- residual strength --- lime-cement mortar --- air-entrained agent --- heritage conservation --- reconstruction and restoration of historical buildings --- properties --- mechanical --- electrical resistivity --- ecofriendly ternary concrete --- SCBA --- SF --- coastal cemented soil --- nano silica --- iron tailings --- mechanical properties --- microscopic mechanism --- granite dust --- stabilizer --- particle size --- plasticity --- unconfined compression strength --- cement --- lime --- sustainable materials --- fibre-reinforced composite --- recycled aggregates


Book
New Frontiers in Cementitious and Lime-Based Materials and Composites
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cement and lime currently are the most common binders in building materials. However, alternative materials and methods are needed to overcome the functional limitations and environmental footprint of conventional products. This Special Issue dedicated to “New frontiers in cementitious and lime-based materials and composites” gathers selected reviews and experimental articles that showcase the most recent trends in this multidisciplinary field. Authoritative contributions from all around the world provide important insights into all areas of research related to cementitious and lime-based materials and composites, spanning from structural engineering to geotechnics, including materials science and processing technology. This Topical Collection is intended to foster innovation and help researchers and developers to identify new solutions for a more sustainable and functional built environment.

Keywords

Technology: general issues --- History of engineering & technology --- durability --- hardened properties --- green composite --- fresh properties --- recycled concrete aggregates --- natural coarse aggregates --- enzyme-induced calcite precipitation --- microbial-induced calcite precipitation --- geotechnical engineering --- geoenvironmental engineering --- precast concrete wall --- interfacial bonding strength --- joint concrete --- interface processing --- washed rough surface --- roughness --- storage time --- cement mortar --- End-of-Life Tyre --- waste --- surface treatment --- compressive strength --- flexural strength --- workability --- fly ash --- freezing shaft sinking --- shaft lining structure --- uneven pressure --- hybrid fiber-reinforced concrete --- crack --- autogenous self-healing --- curing conditions --- supplementary cementitious materials (SCMs) --- GRC-PC --- integrated wall panels --- composite method --- shrinkage properties --- dissipation energy density --- high-strength concrete --- Weibull distribution --- damage mechanics --- constitutive model --- repeated impact --- ACI 544-2R --- high temperatures --- fire --- residual strength --- lime-cement mortar --- air-entrained agent --- heritage conservation --- reconstruction and restoration of historical buildings --- properties --- mechanical --- electrical resistivity --- ecofriendly ternary concrete --- SCBA --- SF --- coastal cemented soil --- nano silica --- iron tailings --- mechanical properties --- microscopic mechanism --- granite dust --- stabilizer --- particle size --- plasticity --- unconfined compression strength --- cement --- lime --- sustainable materials --- fibre-reinforced composite --- recycled aggregates

Listing 1 - 5 of 5
Sort by