Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
6GIoT mainly discusses Communications technology, narrowing the topic into 6G mobile communication, Internet of Things, and related fields, such as Communication Networks, Mobile communication, Wireless networks and etc.
Choose an application
The 2023 EuCNC & 6G Summit is a merge of two successful conferences in the area of telecommunications EuCNC (European Conference on Networks and Communications), supported by the European Commission, and the 6G Summit, originated from the 6G Flagship programme in Finland The conference is sponsored by the IEEE Communications Society and by the European Association for Signal Processing, focusing on all aspects of telecommunications ranging from 5G deployment and mobile IoT to 6G exploration and future communications systems and networks, including experimentation and testbeds, and applications and services It brings together cutting edge research and world renown industries and businesses, globally attracting in the last years more than 1 300 delegates from more than 40 countries all over the world, to present and discuss the latest results, and an exhibition with more than 70 exhibitors, for demonstrating the technology developed in the area, in particular within EU R&I programs.
Choose an application
Choose an application
Novel THz device concepts and signal processing schemes are introduced and experimentally confirmed. Record-high data rates are achieved with a simple envelope detector at the receiver. Moreover, a THz communication system using an optoelectronic receiver and a photonic local oscillator is shown for the first time, and a new class of devices for THz transmitters and receivers is investigated which enables a monolithic co-integration of THz components with advanced silicon photonic circuits.
Electrical engineering --- Terahertz Kommunikation --- Drahtlosnetzwerke --- 6G --- Optoelektronische Signalverarbeitung --- Silizium Plasmonik --- Terahertz communication --- Wireless networks --- Optoelectronic signal processing --- Silicon plasmonics
Choose an application
This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists.
Mobile & handheld device programming / Apps programming --- WAP (wireless) technology --- Electrical engineering --- Computing & information technology --- Open Access --- mobile edge computing --- 5G beyond --- 6G --- edge caching --- Internet of Things --- UAV --- Informàtica a la perifèria --- Sistemes de comunicacions mòbils --- Intel·ligència artificial
Choose an application
Intelligent Sensing and Communications for Internet of Everything introduces three application scenarios of enhanced mobile broadband (eMBB), large-scale machine connection (mMTC) and ultra reliable low latency communication (URLLC). A new communication model, namely backscatter communication (BackCom), intelligent reflector surface (IRS) and unmanned aerial vehicle (UAV) technology in Internet of Everything (IoE), is described in detail. Also focusing on millimeter wave, the book discusses the potential application of terahertz 6G network spectrum in the Internet of Things (IoT). Finally, the applications of IoE network in big data, artificial intelligence (AI) technology and fog/edge computing technology are proposed. Systematically introduces the technical standards and market analysis of 5G's three application scenarios, as well as the problems and challenges faced Provides readers with the knowledge of spectrum energy efficiency and cost-effective IoE network solutions Introduces the application of physical layer related technologies to the IoT, such as BackCom, IRS and UAV relay in IoE, and millimeter wave technology Discusses the potential application of terahertz 6G network spectrum in the IoT.
Telecommunication systems. --- Internet of things. --- IoT (Computer networks) --- Things, Internet of --- Computer networks --- Embedded Internet devices --- Machine-to-machine communications --- Communication systems --- Communications systems --- Systems, Communication --- Electronic systems --- Telecommunication --- Telecommunication. --- 6G mobile communication systems
Choose an application
This open access proceedings includes original, unpublished, peer-reviewed research papers from the International Conference on Wireless Communications, Networking and Applications (WCNA2021), held in Berlin, Germany on December 17-19th, 2021. The topics covered include but are not limited to wireless communications, networking and applications. The papers showcased here share the latest findings on methodologies, algorithms and applications in communication and network, making the book a valuable asset for professors, researchers, engineers, and university students alike. This is an open access book.
Communications engineering / telecommunications --- Electronics engineering --- Electrical engineering --- Wireless Communications --- Wireless Sensor Networks --- Sustainable Pervasive WSN Applications --- 5G/6G Networks and Systems --- Intelligent Transportation --- Future Internet Architectures (ICN/CCN/NDN)
Choose an application
As the main trend and key enabling technology for next-generation wireless networks (i.e., 6G), integrated sensing and communication (ISAC) can effectively improve spectrum efficiency, hardware efficiency, and information processing efficiency. However, it faces several deficiencies, including limited coverage due to high-frequency signals and limited communication-sensing performance due to uncontrollable wireless environments. Reconfigurable intelligent surface (RIS) provides novel dimensions to address these deficiencies by intelligently manipulating the wireless propagation environment in an energy- and hardware-efficient manner. RIS-enabled ISAC is expected to comprehensively promote the multi-dimensional performance of 6G, such as communication capacity, sensing accuracy, and coverage. Nevertheless, to fully realize its potential, one needs to figure out the impacts of RIS on joint communication and sensing performance and tackle new technical challenges in beamforming designand signal processing. The goal of this book, therefore, is to deliver a thorough understanding of RIS-enabled ISAC from three perspectives: performance analysis, beamforming design, and signal processing. Specifically, the authors provide a brief introduction to RIS-enabled ISAC, including basic concepts, motivations, potential application scenarios, and an overview of the state-of-the-art research on RIS-enabled ISAC. The theoretical performance analytical frameworks of RIS-enabled ISAC and their corresponding results are also discussed. Based on this, several critical issues are identified and elaborated on, including signal processing technologies such as angle and Delay-Doppler information acquisition, and air interface technologies such as beamforming designs. Finally, the book concludes with future trends and open issues for further research. The book would be beneficial for researchers, graduate students, and industry professionals who wish to gain a comprehensive understanding of the latest developments and challenges in RIS-enabled ISAC. By providing insights into the potential of RIS-enabled ISAC and the technical challenges that need to be addressed, the book can aid in the development of practical solutions for next-generation wireless networks and contribute to the advancement of the field of wireless communications.
Computer networks. --- Wireless communication systems. --- Mobile communication systems. --- Signal processing. --- Telecommunication. --- Computer Communication Networks. --- Wireless and Mobile Communication. --- Digital and Analog Signal Processing. --- Communications Engineering, Networks. --- 6G mobile communication systems.
Choose an application
In the landscape of the design of carbon nanomaterials, the fine-tuning of their functionalities and physico-chemical properties has increased their potential for therapeutic, diagnostic, and biosensing applications. In this editorial, we will provide a brief overview of the contents of this Special Issue. In particular, nanoplatforms originating from the synergistic combination of carbon-based nanomaterials (i.e., nanotubes, graphene, graphene oxide, carbon quantum dots, nanodiamond, etc.) with various functional molecules such as drugs, natural compounds, biomolecules, polymers, metal nanoparticles, and macrocycles that have useful applications in drug delivery, multi-targeted therapies, theranostic as well as scaffolds in tissue engineering, and as sensing materials have been selected for publication as Articles or Mini Reviews. The variety of applications covered by the nine articles published in this Special Issue of Nanomaterials are proof of the growing attention that the use of carbon nanomaterials in the biomedical/pharmaceutical field has received in recent years. We hope that readers find the contents of this Special Issue useful for their research, which is aimed to advance carbon nanomaterials from the laboratory to clinical nanomedicine.
graphene oxide --- covalent functionalization --- cortical membranes --- calcium phosphate deposition --- graphene/gold nanocomposite --- SERS --- Dopamine --- Rhodamine 6G --- nanodiamond --- tritium --- biodistribution --- Ewing sarcoma --- drug delivery --- siRNA --- nanomedicine --- porphyrin --- J-aggregates --- carbon nanotubes --- nanohybrids --- graphene --- liquid biopsy --- circulating tumor cells --- exosomes --- circulating nucleic acids --- COVID-19 --- pyrrole --- cancer --- doxorubicin --- drug delivery systems --- nanoparticles --- carbon dots --- platelet aggregation --- arterial thrombosis --- signaling molecules --- bleeding disorder --- cytotoxicity --- carbon nanomaterials --- camptothecin --- Caco-2 --- MCF-7 --- NanoHy-GPS --- antibacterial nanosystems --- one-pot microwave-assisted reaction --- silver nanoparticles --- polyvinyl alcohol --- n/a
Choose an application
Optofluidic devices are of high scientific and industrial interest in chemistry, biology, material science, pharmacy, and medicine. In recent years, they have experienced strong development because of impressive achievements in the synergistic combination of photonics and micro/nanofluidics. Sensing and/or lasing platforms showing unprecedented sensitivities in extremely small analyte volumes, and allowing real-time analysis within a lab-on-a-chip approach, have been developed. They are based on the interaction of fluids with evanescent waves induced at the surface of metallic or photonic structures, on the implementation of microcavities to induce optical resonances in the fluid medium, or on other interactions of the microfluidic systems with light. In this context, a large variety of optofluidic devices has emerged, covering topics such as cell manipulation, microfabrication, water purification, energy production, catalytic reactions, microparticle sorting, micro-imaging, or bio-sensing. Moreover, the integration of these optofluidic devices in larger electro-optic platforms represents a highly valuable improvement towards advanced applications, such as those based on surface plasmon resonances that are already on the market. In this Special Issue, we invited the scientific community working in this rapidly evolving field to publish recent research and/or review papers on these optofluidic devices and their applications.
History of engineering & technology --- opto-fluidics --- micro-manipulation --- cells --- microparticles --- electrowetting display --- aperture ratio --- driving waveform --- hysteresis characteristic --- ink distribution --- response speed --- optofluidics --- ocean monitoring --- colorimetric method --- optoelectrokinetics --- optically-induced dielectrophoresis --- micro/nanomaterials --- separation --- fabrication --- electro-fluidic display --- organic dye --- colored oil --- photo-stability --- micro-thermometry --- laser induced fluorescence --- droplet microfluidics --- zinc oxide --- rhodamine B --- rhodamine 6G --- photocatalysis --- microreactor --- photocatalytic water purification --- paper --- 3D hydrodynamic focusing --- optofluidic --- lab-on-a-chip --- biosensor --- microscale channel --- microfluidic --- liquid-core waveguide --- single layer --- reservoir effect --- sensor --- surface plasmon resonance --- nanohole array --- mechanical properties --- nanofluidic --- nanoplasmonic --- dissolved oxygen --- silver nanoprisms --- colorimetry --- n/a
Listing 1 - 10 of 21 | << page >> |
Sort by
|