Listing 1 - 9 of 9
Sort by

Book
Combustion of pulverised coal in a mixture of oxygen and recycled flue gas
Author:
ISBN: 0081000049 0080999980 1306860385 9780081000045 9780080999982 9781306860383 9780080999982 Year: 2014 Publisher: Waltham, Massachusetts ; London, England : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Combustion of Pulverised Coal in a Mixture of Oxygen and Recycled Flue Gas focuses on a niche technology, combustion of coal in an oxygen rich environment, which is one approach to obtaining 'clean coal,' by making it easier to capture carbon that is released in the combustion process. Toporov's book breaks ground on covering the key fundamentals of oxycoal technologies, which have not yet been covered in this depth. Combustion of Pulverised Coal in a Mixture of Oxygen and Recycled Flue Gas summarizes the main results from a pioneering work on experimental and numerical


Book
En modell foer kolpulverfoerbraenning i roterugnar
Author:
ISBN: 9516489397 Year: 1984 Publisher: Aabo : Åbo akademis förlag = Åbo akademi university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Understanding pulverised coal combustion
Author:
ISBN: 9290291389 9789290291381 Year: 1986 Volume: ICTIS/TR34 Publisher: London IEA

Advanced pulverized coal injection technology and blast furnace operation
Author:
ISBN: 1281026891 9786611026899 0080546358 9780080546353 9781281026897 008043651X 9780080436517 6611026894 Year: 2000 Publisher: Oxford, UK Pergamon

Loading...
Export citation

Choose an application

Bookmark

Abstract

In order to reduce the cost of running blast furnaces (BFs), injected pulverized coal is used rather than coke to fire BFs. As a result of this, unburned fine materials are blown with the gas into the bosh and dead man areas with possible detrimental effects on gas flow and permeability of the coke column. The capacity of the furnace to consume these particles by solution loss is probably one of the limitations to coal injection. It is, therefore, important to understand the physicochemical and aerodynamic behaviour of fines including the change of in-furnace phenomena. The Commit


Book
CFD Modeling of Complex Chemical Processes: Multiscale and Multiphysics Challenges
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes.

Keywords

Technology: general issues --- pumped hydroelectric storage --- inlet/outlet --- surrogate model selection --- multi-objective optimization process --- thermal environment --- numerical simulations --- ventilation cooling --- duct position --- the heat dissipation of LHD --- auxiliary ventilation --- triboelectric separation --- particle size distribution --- particle charge --- binary mixture --- in situ particle size measurement --- charge estimation --- computational fluid dynamics --- membrane module --- gas separation --- concentration polarization --- coal mining --- radon concentration --- ventilation --- occupational exposure assessment --- gasification --- fluidized bed --- CFD --- hydrodynamics --- multiphase flow --- surface tension modelling --- VOF --- rising bubbles --- capillary rise --- high pressure bubble column --- the critical bubble diameter --- the gas holdup --- the large bubbles --- the small bubbles --- Stirred fermenter --- dual-impeller --- Segment impeller --- Optimization --- rotating packed bed --- natural gas desulfurization --- droplet characteristic --- Eulerian–Lagrangian approach --- heat transport --- optimized design --- dynamic numerical simulation --- evaporative cooling system --- water recycling --- temperature --- humidity --- n/a --- gas–solid --- cyclone separator --- elevated temperature process --- pneumatic conveying --- large coal particles --- Euler–Lagrange approach --- DPM --- pressure drop --- swirling burner --- combustion characteristics --- industrial pulverized coal furnace --- scale-up --- scale-down --- Saccharomyces cerevisiae --- mechanistic kinetic model --- bioreactor --- concentration gradients --- digital twin --- bioprocess engineering --- Eulerian-Lagrangian approach --- gas-solid --- Euler-Lagrange approach


Book
CFD Modeling of Complex Chemical Processes: Multiscale and Multiphysics Challenges
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes.

Keywords

pumped hydroelectric storage --- inlet/outlet --- surrogate model selection --- multi-objective optimization process --- thermal environment --- numerical simulations --- ventilation cooling --- duct position --- the heat dissipation of LHD --- auxiliary ventilation --- triboelectric separation --- particle size distribution --- particle charge --- binary mixture --- in situ particle size measurement --- charge estimation --- computational fluid dynamics --- membrane module --- gas separation --- concentration polarization --- coal mining --- radon concentration --- ventilation --- occupational exposure assessment --- gasification --- fluidized bed --- CFD --- hydrodynamics --- multiphase flow --- surface tension modelling --- VOF --- rising bubbles --- capillary rise --- high pressure bubble column --- the critical bubble diameter --- the gas holdup --- the large bubbles --- the small bubbles --- Stirred fermenter --- dual-impeller --- Segment impeller --- Optimization --- rotating packed bed --- natural gas desulfurization --- droplet characteristic --- Eulerian–Lagrangian approach --- heat transport --- optimized design --- dynamic numerical simulation --- evaporative cooling system --- water recycling --- temperature --- humidity --- n/a --- gas–solid --- cyclone separator --- elevated temperature process --- pneumatic conveying --- large coal particles --- Euler–Lagrange approach --- DPM --- pressure drop --- swirling burner --- combustion characteristics --- industrial pulverized coal furnace --- scale-up --- scale-down --- Saccharomyces cerevisiae --- mechanistic kinetic model --- bioreactor --- concentration gradients --- digital twin --- bioprocess engineering --- Eulerian-Lagrangian approach --- gas-solid --- Euler-Lagrange approach


Book
CFD Modeling of Complex Chemical Processes: Multiscale and Multiphysics Challenges
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes.

Keywords

Technology: general issues --- pumped hydroelectric storage --- inlet/outlet --- surrogate model selection --- multi-objective optimization process --- thermal environment --- numerical simulations --- ventilation cooling --- duct position --- the heat dissipation of LHD --- auxiliary ventilation --- triboelectric separation --- particle size distribution --- particle charge --- binary mixture --- in situ particle size measurement --- charge estimation --- computational fluid dynamics --- membrane module --- gas separation --- concentration polarization --- coal mining --- radon concentration --- ventilation --- occupational exposure assessment --- gasification --- fluidized bed --- CFD --- hydrodynamics --- multiphase flow --- surface tension modelling --- VOF --- rising bubbles --- capillary rise --- high pressure bubble column --- the critical bubble diameter --- the gas holdup --- the large bubbles --- the small bubbles --- Stirred fermenter --- dual-impeller --- Segment impeller --- Optimization --- rotating packed bed --- natural gas desulfurization --- droplet characteristic --- Eulerian-Lagrangian approach --- heat transport --- optimized design --- dynamic numerical simulation --- evaporative cooling system --- water recycling --- temperature --- humidity --- gas-solid --- cyclone separator --- elevated temperature process --- pneumatic conveying --- large coal particles --- Euler-Lagrange approach --- DPM --- pressure drop --- swirling burner --- combustion characteristics --- industrial pulverized coal furnace --- scale-up --- scale-down --- Saccharomyces cerevisiae --- mechanistic kinetic model --- bioreactor --- concentration gradients --- digital twin --- bioprocess engineering


Book
Modeling and Simulation of Energy Systems
Author:
ISBN: 3039215191 3039215183 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.

Keywords

FCMP --- modeling and simulation --- multiphase equilibrium --- modeling --- polymer electrolyte membrane fuel cell (PEMFC) --- dynamic simulation --- simulation --- multi-scale systems engineering --- process simulation --- cycling --- time-delay --- exergy loss --- gas path analysis --- oil and gas --- solar PV --- optimization --- second law efficiency --- auto thermal reformer --- friction factor --- optimal battery operation --- biodiesel --- energy --- time-varying operation --- efficiency --- process synthesis and design --- nonsmooth modeling --- mixture ratio --- supercritical CO2 --- dynamic optimization --- technoeconomic analysis --- work and heat integration --- compressibility factor --- multi-objective optimisation --- circulating fluidized bed boiler --- wind power --- naphtha recovery unit --- cost optimization --- recompression cycle --- hybrid Life Cycle Assessment --- post-combustion CO2 capture --- piecewise-linear function generation --- solar energy --- industrial process heat --- kriging --- statistical model --- supercritical pulverized coal (SCPC) --- parabolic trough --- combined cycle --- H2O-LiBr working pair --- linearization --- process integration --- smith predictor --- process design --- analysis by synthesis --- MINLP --- methyl-oleate --- diagnostics --- offshore wind --- double-effect system --- shale gas condensate --- geothermal energy --- multi-loop control --- R123 --- waste to energy --- hybrid system --- cogeneration --- energy storage --- energy efficiency --- nonlinear mathematical programming --- superstructure --- concentrating solar thermal --- desalination --- modelling --- binary cycle --- organic Rankine cycle --- refuse derived fuel --- power plants --- WHENS --- process control --- compressor modeling --- energy systems --- PTC --- life cycle analysis --- natural gas transportation --- isentropic exponent --- top-down models --- thermal storage --- supercritical carbon dioxide --- operations --- sustainable process design --- hybrid solar --- energy management --- R245fa --- building blocks --- energy economics --- micro gas turbine --- CSP --- fuel cost minimization problem --- CST --- palladium membrane hydrogen separation --- battery degradation --- optimal control --- RK-ASPEN --- process systems engineering --- supervisory control --- absorption refrigeration --- concentrating solar power --- shale gas condensate-to-heavier liquids --- Dieng --- DMR liquefaction processes --- dynamic modeling --- Organic Rankine Cycle (ORC) --- load-following --- demand response --- Indonesia

Listing 1 - 9 of 9
Sort by