Listing 1 - 10 of 4733 | << page >> |
Sort by
|
Choose an application
Choose an application
Basic treatment, incorporating language of abstract algebra and a history of the discipline. Topics include unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, more. Many problems. Bibliography. Advanced undergraduate-beginning graduate-level. 1977 edition.
Choose an application
Choose an application
Although the Lucas sequences were known to earlier investigators such as Lagrange, Legendre and Genocchi, it is because of the enormous number and variety of results involving them, revealed by Édouard Lucas between 1876 and 1880, that they are now named after him. Since Lucas’ early work, much more has been discovered concerning these remarkable mathematical objects, and the objective of this book is to provide a much more thorough discussion of them than is available in existing monographs. In order to do this a large variety of results, currently scattered throughout the literature, are brought together. Various sections are devoted to the intrinsic arithmetic properties of these sequences, primality testing, the Lucasnomials, some associated density problems and Lucas’ problem of finding a suitable generalization of them. Furthermore, their application, not only to primality testing, but also to integer factoring, efficient solution of quadratic and cubic congruences, cryptography and Diophantine equations are briefly discussed. Also, many historical remarks are sprinkled throughout the book, and a biography of Lucas is included as an appendix. Much of the book is not intended to be overly detailed. Rather, the objective is to provide a good, elementary and clear explanation of the subject matter without too much ancillary material. Most chapters, with the exception of the second and the fourth, will address a particular theme, provide enough information for the reader to get a feel for the subject and supply references to more comprehensive results. Most of this work should be accessible to anyone with a basic knowledge of elementary number theory and abstract algebra. The book’s intended audience is number theorists, both professional and amateur, students and enthusiasts.
Choose an application
Discusses and gives examples of various number theories and how they function within the science of mathematics.
Choose an application
Choose an application
Inzwischen liegt, erneut aktualisiert und gründlich überarbeitet, die sechste Auflage dieses Lehrbuchs vor, das auch der geschichtlichen Entwicklung der Zahlentheorie besondere Aufmerksamkeit schenkt. Dabei werden nicht grundsätzlich die ersten publizierten Beweise zitiert, vielmehr erfährt der Leser den historischen Urheber eines Resultats und erhält Hinweise auf Verschärfungen und Verallgemeinerungen. Dies erlaubt ihm, die Denkweisen und -richtungen nachzuvollziehen, die zur modernen Zahlentheorie führten. Aus den Besprechungen: "... Die Darstellung ist ausführlich, sehr gut lesbar und kommt ohne spezielle Kenntnisse aus. Das Buch kann daher jedem Studenten schon im nullten Semester empfohlen werden." Monatshefte für Mathematik, Österreich, Vol. 108-1989.2-3.
Choose an application
Das vorliegende Buch gibt eine Einführung in die Grundgedanken der modernen Algebraischen Zahlentheorie, einer der traditionsreichsten und gleichzeitig heute besonders aktuellen Grunddisziplinen der Mathematik. Ausgehend von Themenbereichen, die üblicherweise der elementaren Zahlentheorie zugeordnet werden, führt es anhand konkreter Problemstellungen zu den Techniken, die das Herz der modernen Theorie ausmachen. Hierbei wird besonderer Wert auf Lokal-Global-Prinzipien für diophantische Gleichungen gelegt. Die Dedekindsche Theorie der Ideale wird für den Fall quadratischer Zahlkörper vollständig entwickelt. Es werden die p-adischen Zahlen eingeführt und der berühmte Satz von Hasse-Minkowski über rationale quadratische Formen bewiesen. Der technische Apparat wird behutsam und nur so weit entwickelt, wie es für die konkreten Fragestellungen nötig ist. Daher können weite Teile des Buches ohne Vorwissen gelesen werden. Umfangreiches Übungsmaterial rundet die Darstellung ab.
Choose an application
Kenntnisse über den Aufbau des Zahlsystems und über elementare zahlentheoretische Prinzipien gehören zum unverzichtbaren Grundwissen in der Mathematik. Das vorliegende Buch spannt den Bogen vom Rechnen mit natürlichen Zahlen über Teilbarkeitseigenschaften und Kongruenzbetrachtungen bis hin zu zahlentheoretischen Funktionen und Anwendungen wie der Kryptographie und Zahlencodierung. Wert wird dabei auf eine verständliche und umfassende Darstellung des Stoffes gelegt. Beweisideen, die hinter stringent durchgeführten Beweisen stehen, und die Verknüpfung von Fachwissen mit Schulbezügen sind dabei als besondere Merkmale hervorzuheben. Ergänzt wird die Darstellung durch viele Übungsaufgaben, die mit Lösungshinweisen und vollständigen Lösungen versehen sind.
Choose an application
Die Welt der Primzahlen - in faszinierender Weise werden die wesentlichen Ergebnisse über die elementaren Bausteine der natürlichen Zahlen vorgestellt. Grundlegende Sätze und die wichtigsten offenen Fragen und ungelösten Probleme werden von einer wohl einmaligen Sammlung von Rekorden über Primzahlen begleitet. Ein umfangreiches Literaturverzeichnis ergänzt das Buch zu einer wichtigen Quelle für jeden Leser, der sich für die Zahlentheorie und insbesondere für Primzahlen interessiert. In der englischen Originalfassung fast schon ein Klassiker, erscheint das Buch jetzt aktualisiert in deutscher Sprache. Paulo Ribenboim ist emeritierter Professor der kanadischen Queen's University, Fellow der Royal Society of Canada und Träger des George Pólya-Preises der Mathematical Association of America. Er ist Autor von 13 Büchern und über 150 Forschungsartikeln.
Listing 1 - 10 of 4733 | << page >> |
Sort by
|