Listing 1 - 10 of 41 | << page >> |
Sort by
|
Choose an application
Como "árbitros de mercado", os reguladores contribuem para a prestação de serviços públicos essenciais. Sua cultura organizacional, comportamento, ações e governança são fatores importantes na forma como eles, e os setores que supervisionam, atuam.
Choose an application
Choose an application
Choose an application
A frequency synthesizer is an electronic system for generating any of a range of frequencies from a single fixed oscillator. They are found in modern devices like radio receivers, mobile phones, and GPS systems. This comprehensive resource offers RF and microwave engineers a thorough overview of both well-established and recently developed frequency synthesizer design techniques. Professionals find expert guidance on all design aspects, including main architectures, key building blocks, and practical circuit implementation. Engineers learn the development process and gain a solid understanding of how to build a synthesizer from a basic diagram to the final product. Starting with a simple single-loop PLL example, the book progressively examines various alternatives -- fractional-N, DDS, frequency offset, multiloop and more - to achieve required performance objectives. This unique volume gathers a collection of block diagrams, clever circuits, design recipes, and other hard-to-find information that is usually treated as "design secrets". Written in a simple yet rigorous style with numerous illustrations, the book is an all-in-one reference for both beginner and experienced designers.
Choose an application
Choose an application
How to acquire the input frequency from an unlocked stateA phase locked loop (PLL) by itself cannot become useful until it has acquired the applied signal's frequency. Often, a PLL will never reach frequency acquisition (capture) without explicit assistive circuits. Curiously, few books on PLLs treat the topic of frequency acquisition in any depth or detail. Frequency Acquisition Techniques for Phase Locked Loops offers a no-nonsense treatment that is equally useful for engineers, technicians, and managers.Since mathematical rigor for its own sake can degenerate into intellectual "rigor mortis," the author introduces readers to the basics and delivers useful information with clear language and minimal mathematics. With most of the approaches having been developed through years of experience, this completely practical guide explores methods for achieving the locked state in a variety of conditions as it examines:. Performance limitations of phase/frequency detector-based phase locked loops. The quadricorrelator method for both continuous and sampled modes. Sawtooth ramp-and-sample phase detector and how its waveform contains frequency error information that can be extracted. The benefits of a self-sweeping, self-extinguishing topology. Sweep methods using quadrature mixer-based lock detection. The use of digital implementations versus analogFrequency Acquisition Techniques for Phase Locked Loops is an important resource for RF/microwave engineers, in particular, circuit designers; practicing electronics engineers involved in frequency synthesis, phase locked loops, carrier or clock recovery loops, radio-frequency integrated circuit design, and aerospace electronics; and managers wanting to understand the technology of phase locked loops and frequency acquisition assistance techniques or jitter attenuating loops.
Choose an application
"An addendum to the popular Frequency Synthesis by Phase Lock, 2nd ed, this book describes sigma-delta, a frequency synthesis technique that has gained prominence in recent years. In addition, Simulink will be employed extensively to guide the reader. Fractional-n, the still-used forerunner to sigma-delta, is also discussed. Sequences of simulated results allow the reader to gain a deeper understanding while detailed appendices provide information from various stages of development. Simulation models discussed in the chapters that are available online"--Provided by publisher.
Choose an application
The increasingly demanding performance requirements of communications systems, as well as problems posed by the continued scaling of silicon technology, present numerous challenges for the design of frequency synthesizers in modern transceivers. This book contains everything you need to know for the efficient design of frequency synthesizers for today's communications applications. If you need to optimize performance and minimize design time, you will find this book invaluable. Using an intuitive yet rigorous approach, the authors describe simple analytical methods for the design of phase locked loop (PLL) frequency synthesizers using scaled silicon CMOS and bipolar technologies. The entire design process, from system-level specification to layout, is covered comprehensively. Practical design examples are included, and implementation issues are addressed. A key problem-solving resource for practitioners in IC design, the book will also be of interest to researchers and graduate students in electrical engineering.
Choose an application
This book describes the digitally intensive time-domain architectures and techniques applied to millimeter-wave frequency synthesis, with the objective of improving performance and reducing the cost of implementation. Coverage includes system architecture, system level modeling, critical building block design, and digital calibration techniques, making it highly suitable for those who want to learn about mm-wave frequency generation for communication and radar applications, integrated circuit implementation, and time-domain circuit and system techniques.
Choose an application
Listing 1 - 10 of 41 | << page >> |
Sort by
|