Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Statistical methods --- Forecasting --- Sampling --- Hassan ii --- Equation de regression --- Validation d'equation --- Methode de validation --- Eclatement des donnees --- Hassan ii --- Equation de regression --- Validation d'equation --- Methode de validation --- Eclatement des donnees
Choose an application
Les pesticides ont des coûts environnementaux, sociaux et financiers. Afin de diminuer ces coûts, une meilleure compréhension des processus impliqués dans la rétention lors de la pulvérisation sur des plantes est nécessaire. Le but de cette étude est une meilleure prédiction de la rétention par une compréhension plus précise du comportement des gouttes après l’impact, en fonction des propriétés de la goutte et de la surface de la feuille. Les propriétés de la surface de feuille de quatre plantes (feijoa (Acca sellowiana O. Berg.), épinard (Spinacia oleracea L.), betterave (Beta Vulgaris L.) et chénopode (Chenopodium album L.)) ont été déterminées. Le comportement de gouttes de trois mélanges ayant des tensions de surface variées (eau, 0.1% LI700® and 0.1% Pulse®) et impactant les quatre espèces de plantes a été analysé à l’aide d’un banc d’essai de pulvérisation, d’une caméra rapide et d’algorithmes d’analyse d’image. La vitesse et le diamètre des gouttes fut identifié et le comportement des gouttes classé selon trois catégories : adhésion, rebond et éclatement. Le seuil et les caractéristiques de l’éclatement ont été identifiés pour les deux types d’éclatement, i.e. rapide et en couronne, pour les données acquises lors de cette étude ainsi que pour d’autres données afin de bénéficier d’une plage de mouillabilité. Le comportement des gouttes après l’impact est principalement dicté par la rugosité de la surface des feuilles et varie fonction du niveau d’énergie des gouttes. Une zone de transition entre deux types d’impact existe néanmoins. La tension de surface du mélange influence le seuil du rebond mais pas celui de l’éclatement. L’éclatement rapide se produit pour les espèces les plus facilement mouillables et a un niveau énergétique supérieur à celui de l’éclatement en couronne. Ce dernier contribue moins à la rétention. Pesticides have environmental, social and financial costs. In order to decrease these costs, a better understanding of the processes involved in the retention of sprays on plants are needed. The aim of this Thesis is a better prediction of the retention by a more accurate understanding of the droplet impact outcomes according to the droplet and leaf surface properties. The leaf surface properties of four plant species (feijoa (Acca sellowiana O. Berg.), spinach (Spinacia oleracea L.), beetroot (Beta Vulgaris L.), and fat hen (Chenopodium album L.)) were determined. Using a track-sprayer, a high-speed camera, and image processing algorithms, droplet impact outcomes of three mixtures having different surface tensions (water, 0.1% LI700® and 0.1% Pulse®) on the four plant species were analyzed. The droplet velocity and diameter were identified, and the impact outcomes classified in three categories (adhesion, bounce and splash). The threshold leading to splash and the splash characteristics were determined for the two kinds of splashes, i.e. prompt and corona, for this Thesis data sets and additional data sets to study a wider range of wettability. The droplet impact outcomes are mainly determined by the leaf surface roughness and happen at different energy level, but a transition zone between two outcomes exists. The mixture surface tension has an influence on the bounce threshold but not on the splash threshold. The prompt splash occurred for the easier-to-wet and at highest energy level than the corona splash. The latter contributes less to the retention.
Rétention --- pulvérisation --- caméra rapide --- tension de surface --- mouillabilité --- adhésion --- rebond --- éclatement --- Retention --- spray pesticides --- high-speed camera --- surface tension --- leaf surface --- wettability --- adhesion --- bounce --- corona splash --- prompt splash --- Sciences du vivant > Sciences de l'environnement & écologie
Choose an application
Algebraic geometry --- Differential geometry. Global analysis --- Blowing up (Algebraic geometry) --- Curvature. --- Transformations (Mathematics) --- Differential equations, Elliptic. --- Eclatement (Mathématiques) --- Courbure --- Transformations (Mathématiques) --- Equations différentielles elliptiques --- 51 <082.1> --- Mathematics--Series --- Eclatement (Mathématiques) --- Transformations (Mathématiques) --- Equations différentielles elliptiques --- Curvature --- Differential equations, Elliptic --- Algorithms --- Differential invariants --- Geometry, Differential --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Differential equations, Partial --- Calculus --- Curves --- Surfaces --- Alpha process (Algebraic geometry) --- Blow up (Algebraic geometry) --- Blowing up (Mathematics) --- Blowup (Algebraic geometry) --- Dilation, Monoidal --- Monoidal dilation --- Monoidal transformation --- Sigma process (Algebraic geometry) --- Transformation, Monoidal --- Singularities (Mathematics)
Choose an application
51 <082.1> --- Mathematics--Series --- Jet bundles (Mathematics) --- Blowing up (Algebraic geometry) --- Pfaffian systems. --- Singularities (Mathematics) --- Fibrés des jets (Mathématiques) --- Eclatement (Mathématiques) --- Systèmes de Pfaff --- Singularités (Mathématiques) --- Fibrés des jets (Mathématiques) --- Eclatement (Mathématiques) --- Systèmes de Pfaff --- Singularités (Mathématiques) --- Algebraic geometry --- Pfaffian systems --- Alpha process (Algebraic geometry) --- Blow up (Algebraic geometry) --- Blowing up (Mathematics) --- Blowup (Algebraic geometry) --- Dilation, Monoidal --- Monoidal dilation --- Monoidal transformation --- Sigma process (Algebraic geometry) --- Transformation, Monoidal --- Transformations (Mathematics) --- Geometry, Algebraic --- Paff system of equations --- Paff's system of equations --- Pfaffian equations, System of --- System of Pfaffian equations --- System of total differential equations --- Total differential systems --- Differentiable manifolds --- Differential equations --- Global analysis (Mathematics) --- Manifolds (Mathematics) --- Vector bundles --- Pfaffian problem --- Pfaff, Équations de
Choose an application
Neumann problem --- Differential equations, Elliptic. --- Blowing up (Algebraic geometry) --- Convex domains. --- Neumann, Problème de --- Equations différentielles elliptiques --- Eclatement (Mathématiques) --- Algèbres convexes --- Neumann problem. --- Differential equations --- Convex domains --- Differential equations, Elliptic --- 51 <082.1> --- Boundary value problems --- Differential equations, Partial --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Convex regions --- Convexity --- Calculus of variations --- Convex geometry --- Point set theory --- Alpha process (Algebraic geometry) --- Blow up (Algebraic geometry) --- Blowing up (Mathematics) --- Blowup (Algebraic geometry) --- Dilation, Monoidal --- Monoidal dilation --- Monoidal transformation --- Sigma process (Algebraic geometry) --- Transformation, Monoidal --- Singularities (Mathematics) --- Transformations (Mathematics) --- Mathematics--Series
Listing 1 - 5 of 5 |
Sort by
|