Narrow your search

Library

KU Leuven (2)

FARO (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (4)


Language

English (3)

German (1)


Year
From To Submit

2022 (1)

2019 (3)

Listing 1 - 4 of 4
Sort by

Book
Atom-, Kern- und Quantenphysik.
Author:
ISBN: 3110468972 Year: 2022 Publisher: Berlin/Boston : De Gruyter, Inc.,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Die vierbändige Reihe für Physik im Lehramtsstudium behandelt kompakt und anschaulich die Grundlagen der Physik in aller Breite, ohne zu sehr in die theoretische Tiefe zu gehen. Sie ist auf die besonderen Anforderungen angehender Physiklehrer:innen im Sekundarbereich zugeschnitten. Band 3 behandelt die Atom-, Kern- und Quantenphysik. Anhand historischer Experimente wird ausführlich erklärt, wie es zu Beginn des 20. Jahrhunderts zur tiefen Krise in der klassischen Physik kam. Das Konzept und die erstaunlichen Implikationen der daraus entstandenen Quantenmechanik werden anschaulich an Beispielen dargestellt. Das Wasserstoff-Atom, das Periodensystem der Elemente und moderne atomphysikalische Anwendungen lassen sich damit widerspruchsfrei verstehen. Die Grundeigenschaften der Atomkerne werden in verständlichen Modellen entwickelt. Ein abschließender Überblick über den Kosmos der elementaren Teilchen und der Grundkräfte macht deutlich, dass es auf diesem Feld noch vieles zu entdecken gibt. This four-part series for physics teachers in training addresses the principles of physics in a clear and compact way. The experienced lecturer confronts familiar falsehoods held by students with explanatory side notes, conveying examples from everyday life, technological applications, and the historical development of science in consolidation topics. Volume 3 comprises atomic, nuclear, and quantum physics.


Book
Coordination Chemistry of Silicon
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

cluster --- molecular orbital analysis --- bond activation --- X-ray diffraction --- silsesquioxanes --- digermacyclobutadiene --- intermetallic bond --- germanium --- computational chemistry --- ?-electron systems --- isocyanide --- X-ray crystallography --- cyclic organopolysilane --- disilene --- ruthenium --- platinum --- DFT --- Photostability --- silicon surfaces --- stereochemistry --- palladium --- distorted coordination --- 29Si NMR spectroscopy --- organosilicon --- disilanylene polymer --- Si–Cl activation --- adsorption --- AIM --- siliconoid --- nanoparticle --- disiloxane tetrols --- germylene --- hydrogen bonding --- TiO2 --- dehydrogenative alkoxylation --- siloxanes --- 2-silylpyrrolidines --- bonding analysis --- ?-chloro-?-hydrooligosilane --- hydrido complex --- oxidative addition --- photoreaction --- template --- surface modification --- titanium --- bromosilylenes --- host-guest chemistry --- hydrogen bonds --- salt-free --- N-heterocyclic carbines --- silicon cluster --- condensation --- silyliumylidenes --- Baird’s rule --- N-heterocyclic carbenes --- reductant --- main group coordination chemistry --- molecular cage --- subvalent compounds --- isomerization --- silanetriols --- germathioacid chloride --- dehydrobromination --- N-heterocyclic carbene --- mechanistic insights --- ligand-exchange reaction --- bridging silylene ligand --- dye-sensitized solar cell --- silylene --- computation --- functionalization --- silicon --- digermene --- N-Heterocyclic tetrylene --- density functional theory --- primary silane --- small molecule activation --- excited state aromaticity --- germanethione --- supramolecular chemistry


Book
Coordination Chemistry of Silicon
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

cluster --- molecular orbital analysis --- bond activation --- X-ray diffraction --- silsesquioxanes --- digermacyclobutadiene --- intermetallic bond --- germanium --- computational chemistry --- ?-electron systems --- isocyanide --- X-ray crystallography --- cyclic organopolysilane --- disilene --- ruthenium --- platinum --- DFT --- Photostability --- silicon surfaces --- stereochemistry --- palladium --- distorted coordination --- 29Si NMR spectroscopy --- organosilicon --- disilanylene polymer --- Si–Cl activation --- adsorption --- AIM --- siliconoid --- nanoparticle --- disiloxane tetrols --- germylene --- hydrogen bonding --- TiO2 --- dehydrogenative alkoxylation --- siloxanes --- 2-silylpyrrolidines --- bonding analysis --- ?-chloro-?-hydrooligosilane --- hydrido complex --- oxidative addition --- photoreaction --- template --- surface modification --- titanium --- bromosilylenes --- host-guest chemistry --- hydrogen bonds --- salt-free --- N-heterocyclic carbines --- silicon cluster --- condensation --- silyliumylidenes --- Baird’s rule --- N-heterocyclic carbenes --- reductant --- main group coordination chemistry --- molecular cage --- subvalent compounds --- isomerization --- silanetriols --- germathioacid chloride --- dehydrobromination --- N-heterocyclic carbene --- mechanistic insights --- ligand-exchange reaction --- bridging silylene ligand --- dye-sensitized solar cell --- silylene --- computation --- functionalization --- silicon --- digermene --- N-Heterocyclic tetrylene --- density functional theory --- primary silane --- small molecule activation --- excited state aromaticity --- germanethione --- supramolecular chemistry


Book
Coordination Chemistry of Silicon
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

cluster --- molecular orbital analysis --- bond activation --- X-ray diffraction --- silsesquioxanes --- digermacyclobutadiene --- intermetallic bond --- germanium --- computational chemistry --- ?-electron systems --- isocyanide --- X-ray crystallography --- cyclic organopolysilane --- disilene --- ruthenium --- platinum --- DFT --- Photostability --- silicon surfaces --- stereochemistry --- palladium --- distorted coordination --- 29Si NMR spectroscopy --- organosilicon --- disilanylene polymer --- Si–Cl activation --- adsorption --- AIM --- siliconoid --- nanoparticle --- disiloxane tetrols --- germylene --- hydrogen bonding --- TiO2 --- dehydrogenative alkoxylation --- siloxanes --- 2-silylpyrrolidines --- bonding analysis --- ?-chloro-?-hydrooligosilane --- hydrido complex --- oxidative addition --- photoreaction --- template --- surface modification --- titanium --- bromosilylenes --- host-guest chemistry --- hydrogen bonds --- salt-free --- N-heterocyclic carbines --- silicon cluster --- condensation --- silyliumylidenes --- Baird’s rule --- N-heterocyclic carbenes --- reductant --- main group coordination chemistry --- molecular cage --- subvalent compounds --- isomerization --- silanetriols --- germathioacid chloride --- dehydrobromination --- N-heterocyclic carbene --- mechanistic insights --- ligand-exchange reaction --- bridging silylene ligand --- dye-sensitized solar cell --- silylene --- computation --- functionalization --- silicon --- digermene --- N-Heterocyclic tetrylene --- density functional theory --- primary silane --- small molecule activation --- excited state aromaticity --- germanethione --- supramolecular chemistry --- cluster --- molecular orbital analysis --- bond activation --- X-ray diffraction --- silsesquioxanes --- digermacyclobutadiene --- intermetallic bond --- germanium --- computational chemistry --- ?-electron systems --- isocyanide --- X-ray crystallography --- cyclic organopolysilane --- disilene --- ruthenium --- platinum --- DFT --- Photostability --- silicon surfaces --- stereochemistry --- palladium --- distorted coordination --- 29Si NMR spectroscopy --- organosilicon --- disilanylene polymer --- Si–Cl activation --- adsorption --- AIM --- siliconoid --- nanoparticle --- disiloxane tetrols --- germylene --- hydrogen bonding --- TiO2 --- dehydrogenative alkoxylation --- siloxanes --- 2-silylpyrrolidines --- bonding analysis --- ?-chloro-?-hydrooligosilane --- hydrido complex --- oxidative addition --- photoreaction --- template --- surface modification --- titanium --- bromosilylenes --- host-guest chemistry --- hydrogen bonds --- salt-free --- N-heterocyclic carbines --- silicon cluster --- condensation --- silyliumylidenes --- Baird’s rule --- N-heterocyclic carbenes --- reductant --- main group coordination chemistry --- molecular cage --- subvalent compounds --- isomerization --- silanetriols --- germathioacid chloride --- dehydrobromination --- N-heterocyclic carbene --- mechanistic insights --- ligand-exchange reaction --- bridging silylene ligand --- dye-sensitized solar cell --- silylene --- computation --- functionalization --- silicon --- digermene --- N-Heterocyclic tetrylene --- density functional theory --- primary silane --- small molecule activation --- excited state aromaticity --- germanethione --- supramolecular chemistry

Listing 1 - 4 of 4
Sort by