Narrow your search

Library

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

AP (1)

FARO (1)

KDG (1)

More...

Resource type

book (3)

digital (1)


Language

English (4)


Year
From To Submit

2021 (2)

2016 (2)

Listing 1 - 4 of 4
Sort by

Book
Engineering Applications of FPGAs : Chaotic Systems, Artificial Neural Networks, Random Number Generators, and Secure Communication Systems
Authors: --- ---
ISBN: 3319341138 3319341154 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will benefit from this practical guide to implementing a variety of engineering applications from VHDL programming and co-simulation issues, to FPGA realizations of chaos generators, ANNs for chaotic time-series prediction, RNGs and chaotic secure communications for image transmission.


Digital
Engineering Applications of FPGAs : Chaotic Systems, Artificial Neural Networks, Random Number Generators, and Secure Communication Systems
Authors: --- ---
ISBN: 9783319341156 Year: 2016 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will benefit from this practical guide to implementing a variety of engineering applications from VHDL programming and co-simulation issues, to FPGA realizations of chaos generators, ANNs for chaotic time-series prediction, RNGs and chaotic secure communications for image transmission.


Book
Numerical and Evolutionary Optimization 2020
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book was established after the 8th International Workshop on Numerical and Evolutionary Optimization (NEO), representing a collection of papers on the intersection of the two research areas covered at this workshop: numerical optimization and evolutionary search techniques. While focusing on the design of fast and reliable methods lying across these two paradigms, the resulting techniques are strongly applicable to a broad class of real-world problems, such as pattern recognition, routing, energy, lines of production, prediction, and modeling, among others. This volume is intended to serve as a useful reference for mathematicians, engineers, and computer scientists to explore current issues and solutions emerging from these mathematical and computational methods and their applications.

Keywords

robust optimization --- differential evolution --- ROOT --- optimization framework --- drainage rehabilitation --- overflooding --- pipe breaking --- VCO --- CMOS differential pair --- PVT variations --- Monte Carlo analysis --- multi-objective optimization --- Pareto Tracer --- continuation --- constraint handling --- surrogate modeling --- multiobjective optimization --- evolutionary algorithms --- kriging method --- ensemble method --- adaptive algorithm --- liquid storage tanks --- base excitation --- artificial intelligence --- Multi-Gene Genetic Programming --- computational fluid dynamics --- finite volume method --- JSSP --- CMOSA --- CMOTA --- chaotic perturbation --- fixed point arithmetic --- FP16 --- pseudo random number generator --- incorporation of preferences --- multi-criteria classification --- decision-making process --- multi-objective evolutionary optimization --- outranking relationships --- decision maker profile --- profile assessment --- region of interest approximation --- optimization using preferences --- hybrid evolutionary approach --- forecasting --- Convolutional Neural Network --- LSTM --- COVID-19 --- deep learning --- trust region methods --- multiobjective descent --- derivative-free optimization --- radial basis functions --- fully linear models --- decision making process --- cognitive tasks --- recommender system --- project portfolio selection problem --- usability evaluation --- multi-objective portfolio optimization problem --- trapezoidal fuzzy numbers --- density estimators --- steady state algorithms --- protein structure prediction --- Hybrid Simulated Annealing --- Template-Based Modeling --- structural biology --- Metropolis --- optimization --- linear programming --- energy central


Book
Numerical and Evolutionary Optimization 2020
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book was established after the 8th International Workshop on Numerical and Evolutionary Optimization (NEO), representing a collection of papers on the intersection of the two research areas covered at this workshop: numerical optimization and evolutionary search techniques. While focusing on the design of fast and reliable methods lying across these two paradigms, the resulting techniques are strongly applicable to a broad class of real-world problems, such as pattern recognition, routing, energy, lines of production, prediction, and modeling, among others. This volume is intended to serve as a useful reference for mathematicians, engineers, and computer scientists to explore current issues and solutions emerging from these mathematical and computational methods and their applications.

Keywords

Research & information: general --- Mathematics & science --- robust optimization --- differential evolution --- ROOT --- optimization framework --- drainage rehabilitation --- overflooding --- pipe breaking --- VCO --- CMOS differential pair --- PVT variations --- Monte Carlo analysis --- multi-objective optimization --- Pareto Tracer --- continuation --- constraint handling --- surrogate modeling --- multiobjective optimization --- evolutionary algorithms --- kriging method --- ensemble method --- adaptive algorithm --- liquid storage tanks --- base excitation --- artificial intelligence --- Multi-Gene Genetic Programming --- computational fluid dynamics --- finite volume method --- JSSP --- CMOSA --- CMOTA --- chaotic perturbation --- fixed point arithmetic --- FP16 --- pseudo random number generator --- incorporation of preferences --- multi-criteria classification --- decision-making process --- multi-objective evolutionary optimization --- outranking relationships --- decision maker profile --- profile assessment --- region of interest approximation --- optimization using preferences --- hybrid evolutionary approach --- forecasting --- Convolutional Neural Network --- LSTM --- COVID-19 --- deep learning --- trust region methods --- multiobjective descent --- derivative-free optimization --- radial basis functions --- fully linear models --- decision making process --- cognitive tasks --- recommender system --- project portfolio selection problem --- usability evaluation --- multi-objective portfolio optimization problem --- trapezoidal fuzzy numbers --- density estimators --- steady state algorithms --- protein structure prediction --- Hybrid Simulated Annealing --- Template-Based Modeling --- structural biology --- Metropolis --- optimization --- linear programming --- energy central --- robust optimization --- differential evolution --- ROOT --- optimization framework --- drainage rehabilitation --- overflooding --- pipe breaking --- VCO --- CMOS differential pair --- PVT variations --- Monte Carlo analysis --- multi-objective optimization --- Pareto Tracer --- continuation --- constraint handling --- surrogate modeling --- multiobjective optimization --- evolutionary algorithms --- kriging method --- ensemble method --- adaptive algorithm --- liquid storage tanks --- base excitation --- artificial intelligence --- Multi-Gene Genetic Programming --- computational fluid dynamics --- finite volume method --- JSSP --- CMOSA --- CMOTA --- chaotic perturbation --- fixed point arithmetic --- FP16 --- pseudo random number generator --- incorporation of preferences --- multi-criteria classification --- decision-making process --- multi-objective evolutionary optimization --- outranking relationships --- decision maker profile --- profile assessment --- region of interest approximation --- optimization using preferences --- hybrid evolutionary approach --- forecasting --- Convolutional Neural Network --- LSTM --- COVID-19 --- deep learning --- trust region methods --- multiobjective descent --- derivative-free optimization --- radial basis functions --- fully linear models --- decision making process --- cognitive tasks --- recommender system --- project portfolio selection problem --- usability evaluation --- multi-objective portfolio optimization problem --- trapezoidal fuzzy numbers --- density estimators --- steady state algorithms --- protein structure prediction --- Hybrid Simulated Annealing --- Template-Based Modeling --- structural biology --- Metropolis --- optimization --- linear programming --- energy central

Listing 1 - 4 of 4
Sort by