Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
Wheat. --- Wheat --- Genetics. --- Breadstuffs --- Cultivated wheats --- Spring wheat --- Triticum --- Triticum aestivum --- Triticum sativum --- Triticum vulgare --- Wheats, Cultivated --- Grasses --- Blat --- Genètica vegetal
Choose an application
Wheat --- Heirloom varieties. --- Breadstuffs --- Cultivated wheats --- Spring wheat --- Triticum --- Triticum aestivum --- Triticum sativum --- Triticum vulgare --- Wheats, Cultivated --- Grasses --- Cereals
Choose an application
This edited book addresses the introduction to wheat, advancements in breeding, the contribution of biotechnological approaches, the development of climate-resilient wheat cultivars, and biofortification efforts to create nutrient-rich wheat cultivars. The world faces simultaneous challenges of a growing population and climate change. It is anticipated that the world population will exceed 9 billion by 2050. Meanwhile, climate change significantly impacts agriculture through uneven patterns, expected to worsen in the coming years, resulting in substantial losses due to biotic and abiotic stresses. Wheat, a staple food for millions worldwide, requires more studies to develop climate-resilient cultivars with improved nutritional content. Given these considerations, it is crucial to understand the activities conducted for wheat breeding and address the current gap to ensure an ample food supply for future generations. This book is beneficial for researchers, teachers, agriculturists, biologists, climate change scientists, and organizations involved in wheat breeding. It also serves as a valuable resource for undergraduate, master, and PhD students interested in wheat.
Agricultural biotechnology. --- Agricultural genome mapping. --- Agriculture. --- Botany. --- Agricultural Biotechnology. --- Agricultural Genetics. --- Plant Science. --- Wheat --- Breeding.
Choose an application
Landraces possess a very large genetic base in population structure and are dynamic populations of cultivated plants with historical origin, distinct identity, and without any formal crop improvement. They are often genetically diverse, locally adapted, and associated with traditional farming systems. Resistance genes to biotic and abiotic stress factors, which are especially diversified in landraces, are of great interest to plant breeders, faced with global climate challenge. In addition, gene pools made of different landraces grown in different ecological conditions can be used for wheat breeding to enhance quality; yield and other desirable agricultural parameters. An estimated 75% of the genetic diversity of crop plants was lost in the last century due to the replacement of high yielding modern varieties. There is, thus, an urgent need to preserve existing species, not only for posterity but also as a means to secure food supply for a rising world population. In this book, we provide an overview of wheat landraces with special attention to genetic diversities, conservation, and utilization. .
Meteorology. Climatology --- Nutritionary hygiene. Diet --- Agriculture. Animal husbandry. Hunting. Fishery --- landbouw --- voedingsleer --- klimaatverandering
Choose an application
This edited book is focused on Sustainable Development Goal 2, which aims to achieve 'Zero Hunger.' It provides deep insights into the global sorghum status, limitations to its production, advancements in agronomic practices, and the application of high-throughput phenotyping technologies. Sorghum plays a vital role in global food security, agricultural sustainability, and rural livelihoods, making it an important crop for both developing and developed countries. It is a staple food for millions of people around the world, particularly in arid and semi-arid regions where other crops may struggle to grow. Sorghum exhibits significant genetic diversity, providing a rich resource for breeding programs aimed at developing improved varieties with traits such as higher yield, disease resistance, and nutritional quality. The book enhances readers' understanding of classical breeding methods and their role in sorghum improvement. It also focuses on the contribution of OMICs and biotechnological approaches to sorghum improvement. Detailed information about the genetic and genomic resources of sorghum provided is helpful for the scientific community to utilize in sorghum breeding. Chapters highlight sorghum genome sequencing, transgenic and hybrid sorghum, and the application of genome editing. This book is useful to the breeding community, serving as a resource for interdisciplinary research groups such as geneticists, breeders, biotechnologists, bioinformaticians, and students, supporting them in accelerating their activities related to sorghum breeding.
Agriculture. --- Agricultural biotechnology. --- Agricultural genome mapping. --- Agricultural Biotechnology. --- Agricultural Genetics.
Choose an application
Choose an application
Wheat --- Heirloom varieties. --- Breadstuffs --- Cultivated wheats --- Spring wheat --- Triticum --- Triticum aestivum --- Triticum sativum --- Triticum vulgare --- Wheats, Cultivated --- Grasses
Choose an application
Meteorology. Climatology --- Nutritionary hygiene. Diet --- Agriculture. Animal husbandry. Hunting. Fishery --- landbouw --- voedingsleer --- klimaatverandering
Choose an application
Wheat (Triticum L.), an annual herbaceous plant in Poacae (Gramineae) family, settles in the Triticeae (Hordeae) subfamily. The grasses (Poaceae Barnhart) are the fifth largest (monocotyledonous flowering) plant family and of great importance for human civilization and life. Cereal crops such as maize, wheat, rice, barley, and millet are the domesticated ones in the family. It is still the most vital economical plant family in modern times, providing food, forage, building materials (bamboo, thatch), and fuel (ethanol). Wheat has many accessions in national and international gene banks. The estimated number of wheats by FAO in 2010 is 856,000, and, followed by rice (774,000), and barley (467,000). However, the recent consumer's (misdirected) focus on gluten content and nutritional value urges scientists to reexamine their knowledge about wheat (i.e., origin, evolution, and general and special quality characteristics), as well as their wild relatives and landraces for newer possible genetic resources. Cultured or non-cultured ancestral wheats: einkorn, emmer, wild emmer, spelt, macha, and vavilovii are still limitedly grown on the higher areas in Turkey, Italy, Germany, Morocco, Israel, and Balkan countries. They are exploited mostly for their desired agronomic, and specific quality. In some cultures, wheat species are believed to be therapeutic, with bioactive compounds that reduce and inhibit stubborn illnesses such as diabetes, cancer, Alzheimer, and cardiovascular diseases. In this book, we summarize the importance of ancestral wheat species, and provide a prospect for their future with special considerations in terms of species conservation and improvement. .
Choose an application
Plant genetics. Plant evolution --- Plant physiology. Plant biophysics --- Agronomy --- Agriculture. Animal husbandry. Hunting. Fishery --- Biotechnology --- systematische plantkunde --- landbouw --- landbouwbeleid --- biotechnologie --- planten
Listing 1 - 10 of 12 | << page >> |
Sort by
|