Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Choose an application
The introduction of new topologies and training procedures to deep neural networks has solicited a renewed interest in the field of neural computation. The use of deep structures has significantly improved state-of-the-art applications in many fields, such as computer vision, speech and text processing, medical applications, and IoT (Internet of Things). The probability of a successful outcome from a neural network is linked to selection of an appropriate network architecture and training algorithm. Accordingly, much of the recent research on neural networks has been devoted to the study and proposal of novel architectures, including solutions tailored to specific problems. This book gives significant contributions to the above-mentioned fields by merging theoretical aspects and relevant applications.
Information technology industries --- facial image analysis --- facial nerve paralysis --- deep convolutional neural networks --- image classification --- Chinese text classification --- long short-term memory --- convolutional neural network --- Arabic named entity recognition --- bidirectional recurrent neural network --- GRU --- LSTM --- natural language processing --- word embedding --- CNN --- object detection network --- attention mechanism --- feature fusion --- LSTM-CRF model --- elements recognition --- linguistic features --- POS syntactic rules --- action recognition --- fused features --- 3D convolution neural network --- motion map --- long short-term-memory --- tooth-marked tongue --- gradient-weighted class activation maps --- ship identification --- fully convolutional network --- embedded deep learning --- scalability --- gesture recognition --- human computer interaction --- alternative fusion neural network --- deep learning --- sentiment attention mechanism --- bidirectional gated recurrent unit --- Internet of Things --- convolutional neural networks --- graph partitioning --- distributed systems --- resource-efficient inference --- pedestrian attribute recognition --- graph convolutional network --- multi-label learning --- autoencoders --- long-short-term memory networks --- convolution neural Networks --- object recognition --- sentiment analysis --- text recognition --- IoT (Internet of Thing) systems --- medical applications
Choose an application
The introduction of new topologies and training procedures to deep neural networks has solicited a renewed interest in the field of neural computation. The use of deep structures has significantly improved state-of-the-art applications in many fields, such as computer vision, speech and text processing, medical applications, and IoT (Internet of Things). The probability of a successful outcome from a neural network is linked to selection of an appropriate network architecture and training algorithm. Accordingly, much of the recent research on neural networks has been devoted to the study and proposal of novel architectures, including solutions tailored to specific problems. This book gives significant contributions to the above-mentioned fields by merging theoretical aspects and relevant applications.
facial image analysis --- facial nerve paralysis --- deep convolutional neural networks --- image classification --- Chinese text classification --- long short-term memory --- convolutional neural network --- Arabic named entity recognition --- bidirectional recurrent neural network --- GRU --- LSTM --- natural language processing --- word embedding --- CNN --- object detection network --- attention mechanism --- feature fusion --- LSTM-CRF model --- elements recognition --- linguistic features --- POS syntactic rules --- action recognition --- fused features --- 3D convolution neural network --- motion map --- long short-term-memory --- tooth-marked tongue --- gradient-weighted class activation maps --- ship identification --- fully convolutional network --- embedded deep learning --- scalability --- gesture recognition --- human computer interaction --- alternative fusion neural network --- deep learning --- sentiment attention mechanism --- bidirectional gated recurrent unit --- Internet of Things --- convolutional neural networks --- graph partitioning --- distributed systems --- resource-efficient inference --- pedestrian attribute recognition --- graph convolutional network --- multi-label learning --- autoencoders --- long-short-term memory networks --- convolution neural Networks --- object recognition --- sentiment analysis --- text recognition --- IoT (Internet of Thing) systems --- medical applications
Choose an application
The introduction of new topologies and training procedures to deep neural networks has solicited a renewed interest in the field of neural computation. The use of deep structures has significantly improved state-of-the-art applications in many fields, such as computer vision, speech and text processing, medical applications, and IoT (Internet of Things). The probability of a successful outcome from a neural network is linked to selection of an appropriate network architecture and training algorithm. Accordingly, much of the recent research on neural networks has been devoted to the study and proposal of novel architectures, including solutions tailored to specific problems. This book gives significant contributions to the above-mentioned fields by merging theoretical aspects and relevant applications.
Information technology industries --- facial image analysis --- facial nerve paralysis --- deep convolutional neural networks --- image classification --- Chinese text classification --- long short-term memory --- convolutional neural network --- Arabic named entity recognition --- bidirectional recurrent neural network --- GRU --- LSTM --- natural language processing --- word embedding --- CNN --- object detection network --- attention mechanism --- feature fusion --- LSTM-CRF model --- elements recognition --- linguistic features --- POS syntactic rules --- action recognition --- fused features --- 3D convolution neural network --- motion map --- long short-term-memory --- tooth-marked tongue --- gradient-weighted class activation maps --- ship identification --- fully convolutional network --- embedded deep learning --- scalability --- gesture recognition --- human computer interaction --- alternative fusion neural network --- deep learning --- sentiment attention mechanism --- bidirectional gated recurrent unit --- Internet of Things --- convolutional neural networks --- graph partitioning --- distributed systems --- resource-efficient inference --- pedestrian attribute recognition --- graph convolutional network --- multi-label learning --- autoencoders --- long-short-term memory networks --- convolution neural Networks --- object recognition --- sentiment analysis --- text recognition --- IoT (Internet of Thing) systems --- medical applications
Choose an application
Since the birth of the Chua circuit in 1983, a considerable number of fruitful, fascinating and relevant research topics have arisen. In honor of the 25th anniversary of the invention of Chua's circuit, this book presents the 25 years of research on the implementation of Chua's circuit, and also discusses future directions and emerging applications of recent results. The purpose of the book is to provide researchers, PhD students, and undergraduate students a research monograph containing both fundamentals on the topics and advanced results that have been recently obtained. With about 60 illus
Listing 1 - 5 of 5 |
Sort by
|