Listing 1 - 10 of 65 << page
of 7
>>
Sort by

Book
Overdrukken / Wevers, Martine.
Author:
Publisher: Loc. var. nom. var.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Degradation and corrosion.
Author:
Year: 2008 Publisher: Leuven VTK

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Proceedings of the European symposium on damage development and failure processes in composite materials : Leuven (Belgium), 4-5-6 May 1987
Authors: ---
Year: 1987 Publisher: Heverlee KUL. departement metaalkunde en toegepaste materiaalkunde

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Film
Eredoctoraat Prof. E. Aernoudt
Authors: ---
Year: 2002 Publisher: Leuven KU Leuven. Audiovisuele dienst [prod., real., dist.]

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Structural Health Monitoring of Large Structures Using Acoustic Emission-Case Histories
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Acoustic emission (AE) techniques have successfully been used for assuring the structural integrity of large rocket motorcases since 1963, and their uses have expanded to ever larger structures, especially as structural health monitoring (SHM) of large structures has become the most urgent task for engineering communities around the world. The needs for advanced AE monitoring methods are felt keenly by those dealing with aging infrastructures. Many publications have appeared covering various aspects of AE techniques, but documentation of actual applications of AE techniques has been mostly limited to reports of successful results without technical details that allow objective evaluation of the results. There are some exceptions in the literature. In this Special Issue of the Acoustics section of Applied Sciences, we seek contributions covering these exceptions cited here. Here, we seek contributions describing case histories of AE applications to large structures that have achieved the goals of SHM by providing adequate technical information supporting the success stories. Types of structures can include aerospace and geological structures, bridges, buildings, factories, maritime facilities, off-shore structures, etc. Experiences with AE monitoring methods designed and proven for large stru


Book
Structural Health Monitoring of Large Structures Using Acoustic Emission-Case Histories
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Acoustic emission (AE) techniques have successfully been used for assuring the structural integrity of large rocket motorcases since 1963, and their uses have expanded to ever larger structures, especially as structural health monitoring (SHM) of large structures has become the most urgent task for engineering communities around the world. The needs for advanced AE monitoring methods are felt keenly by those dealing with aging infrastructures. Many publications have appeared covering various aspects of AE techniques, but documentation of actual applications of AE techniques has been mostly limited to reports of successful results without technical details that allow objective evaluation of the results. There are some exceptions in the literature. In this Special Issue of the Acoustics section of Applied Sciences, we seek contributions covering these exceptions cited here. Here, we seek contributions describing case histories of AE applications to large structures that have achieved the goals of SHM by providing adequate technical information supporting the success stories. Types of structures can include aerospace and geological structures, bridges, buildings, factories, maritime facilities, off-shore structures, etc. Experiences with AE monitoring methods designed and proven for large stru


Article
Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography
Authors: --- --- ---
Year: 2000 Publisher: [Amsterdam] Elsevier

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microfocus Computer Tomography (μCT) is a non-destructive imaging technique that allows visualisation of internal features within non-transparent objects such as sedimentary rocks. With resolution as good as 10 μm in three dimensions, this technique is highly superior to medical CT widely used in geology and material sciences. Superior resolution is achieved by decreasing the X-ray spot size, which allows a decrease in the penumbra effect and an increase in primary magnification by placing the sample close to the X-ray source. Since polychromatic X-ray sources are used, the technique is not free of artefacts. Application of filtering techniques is recommended to circumvent these artefacts and to achieve good quality images for quantitative analysis. Application of a dual energy approach allows quantification of density as well as effective atomic number distribution of internal features. As the technique acquires data in 3D, μCT provides an ideal tool to link 2D thin-section petrography to 3D petrophysical measurements or to be used within an upscaling approach. A number of applications and the use of dual energy density and effective atomic number characterisations are presented. Attention is also paid to some of the limitations of this technique.

Keywords


Book
Structural Health Monitoring of Large Structures Using Acoustic Emission-Case Histories
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Acoustic emission (AE) techniques have successfully been used for assuring the structural integrity of large rocket motorcases since 1963, and their uses have expanded to ever larger structures, especially as structural health monitoring (SHM) of large structures has become the most urgent task for engineering communities around the world. The needs for advanced AE monitoring methods are felt keenly by those dealing with aging infrastructures. Many publications have appeared covering various aspects of AE techniques, but documentation of actual applications of AE techniques has been mostly limited to reports of successful results without technical details that allow objective evaluation of the results. There are some exceptions in the literature. In this Special Issue of the Acoustics section of Applied Sciences, we seek contributions covering these exceptions cited here. Here, we seek contributions describing case histories of AE applications to large structures that have achieved the goals of SHM by providing adequate technical information supporting the success stories. Types of structures can include aerospace and geological structures, bridges, buildings, factories, maritime facilities, off-shore structures, etc. Experiences with AE monitoring methods designed and proven for large stru


Dissertation
A surface plasmon resonance optical fibre sensor for testing detergent cleaning efficiency.
Authors: --- ---
ISBN: 9789460187292 Year: 2013 Publisher: Leuven K.U.Leuven. Faculteit Ingenieurswetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract


Dissertation
Micro-CT based morphological and mechanical characterisation of open porous metallic materials.
Authors: --- --- --- ---
ISBN: 9789460188084 Year: 2014 Publisher: Leuven KU Leuven. Faculteit ingenieurswetenschappen.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Porous materials have very attractive properties because of their lightweight and unique geometry that lead to their shock or sound absorbing properties. Thus, porous materials are frequently used in many fields, such as lightweight sandwich manufacturing, packaging, crash worthiness and medicine. Most porous materials have a random morphology, however the request for porous structures with highly controlled properties, coming from different application areas within the industrial and scientific market, forced researchers to develop novel additive manufacturing (AM) production techniques like selective laser melting (SLM), selective laser sintering (SLS) or electron beam melting (EBM). A critical aspect in optimising these production techniques and their postproduction treatments is to allow control of the morphological and mechanical properties of manufactured porous structures on both meso- and microscale. Therefore, the main focus of this study was twofold, namely: i) optimisation of the porous structures towards novel engineering materials with fully customized morphological properties and ii) unravelling of the mechanical behaviour and failure of those porous structures subjected to the mechanical loading. Due to the large variety of porous structures, and their broad range of applications, this PhD study focuses on one specific production technique and material type. The prerequisite was that, within this specific manufacturing approach the porous structures with a well controlled macro-morphology can be produced based on the design input which can be modified according to the desired output. In practice a case study on open porous Ti6Al4V structures, produced by SLM, was performed.The dissertation consists mainly of two parts: one on material functionalization (chapters 2 and 4) and one on material characterization (chapter 3, 5 and 6). In chapter 2 a protocol for the surface topology improvement has been developed and applied to Ti6Al4V porous structures produced by SLM. Topology changes were introduced by several surface treatments consisting of chemical etching followed by electrochemical polishing. In that way the surface irregularities, typical for porous structures manufactured by SLM have been eliminated.In chapter 3 a novel tool for roughness measurements has been developed and validated for a quantitative characterization of the surface topology. For the first time, the micro-computed tomography (μCT) has been applied for quantification of the materials’ surface texture. Validity of this surface roughness analysis has been given by comparison to physical roughness measurementsperformed by conventional systems showing that the novel μCT image based tool for surface roughness analysis can be applied for quantitative surface characterization.The unique properties of porous structures strongly depend on the morphological properties, thus their thorough characterization is required. Therefore, in chapter 4 a relationship between thestructural properties and the μCT based analysis of porous Ti6Al4V structures has been investigated to define the most optimal characterization conditions. In this study, a basic, but systematic protocol for determination of the best acquisition parameters such as spatial resolution has been developed regarding the μCT based morphological characterization of the complex porous structures. The findings of this study can assist to increase the quality of 3D quantitative morphological analysis of any object in relation to its surface complexity as well to reduce the investigation time and costs by evolving towards a customised relationship of μCT settings versus morphological analysis level.In chapter 5, the surface modification protocol presented in chapter 2 has been developed further in order to manufacture Ti6Al4V porous structures with customized morphological properties. Application of the multi-factorial design of experiments led to a controlled, at both macro and micro level, morphological modification of the porous structures. This allowed to:i) eliminate the surface irregularities,ii) modify the surface roughness in a robust manner but, alsoiii) produce customized structures with desired global morphological propertiesAdditionally, the developed protocol can be applied for production of various porous structures with a final beam thickness that is lower than the resolution of the selected manufacturing process. Finally, modification of the beam surface can be used for controlling the biological cell behaviour seeded on 3D porous structures. In that way, the most optimal surface properties for future designs and production of 3D structures for orthopaedic application can be looked for and validated experimentally.Finally, a proof of concept case study was performed by using an automated non-rigid image registration to assess strain through analysis of μCT images acquired prior-to and after compressive loading of SLM made Ti6Al4V open porous structures. Additionally, the evaluation of the potential and limitations of the proposed approach was assessed based on the simulated deformation of the phantom object. It was shown that the µCT based strain mapping, performed by combining the in-situ loading and non-rigid image registration of the µCT images, provides a valuable tool to identify and analyze the critical sections in the porous structure having a higher strain concentration, eventually leading to sudden failure. Additionally, the local strain analysis revealed larger strain concentrations at the beam geometry imperfections. Experiments with the phantom object confirmed potential of the proposed approach for the local strain analysis as the computed strain corresponded with the deformation artificially applied to the tested object. However, obtained strain results showed dependency upon the applied grid spacing of the B-spline transformation. Therefore, further development of the non-rigid image registration approach as a tool for local strain analysis is required, although a qualitative analysis of the local deformation can already be performed to evaluate the volumetric changes in the porous Ti6Al4V structures.In conclusion, the work shows that combination of different tools was proven to be a valuable technique for thorough morphological characterization of complex porous structures, as well as their mechanical analysis. This resulted in production of novel porous Ti6Al4V structures with controlled morphological properties which can assist in more controlled evaluation of the combined effect of various functional properties. Furthermore, a novel characterization tool for surface analysis has been developed which can be beneficial for various research subjects dealing with surface engineering aspects.

Listing 1 - 10 of 65 << page
of 7
>>
Sort by