Narrow your search

Library

ULB (8)

KU Leuven (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULiège (7)

VIVES (7)

AP (5)

KDG (5)

More...

Resource type

book (12)

digital (5)


Language

English (16)


Year
From To Submit

2023 (3)

2022 (2)

2021 (3)

2016 (3)

2007 (3)

More...
Listing 1 - 10 of 16 << page
of 2
>>
Sort by
A Basic Course in Probability Theory
Authors: ---
ISBN: 0387719393 0387719385 Year: 2007 Publisher: New York, NY : Springer New York : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. With this goal in mind, the pace is lively, yet thorough. Basic notions of independence and conditional expectation are introduced relatively early on in the text, while conditional expectation is illustrated in detail in the context of martingales, Markov property and strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two highlights. The historic role of size-biasing is emphasized in the contexts of large deviations and in developments of Tauberian Theory. The authors assume a graduate level of maturity in mathematics, but otherwise the book will be suitable for students with varying levels of background in analysis and measure theory. In particular, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including the graduate textbook, Stochastic Processes with Applications.

Probability and partial differential equations in modern applied mathematics
Authors: ---
ISBN: 9780387293714 0387258795 9780387258799 9786613250742 038729371X 1283250748 Year: 2005 Publisher: New York, N.Y. : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of deterministic problems, as well as to offer new perspectives on the phenomena for modeling purposes. There is also a growing appreciation of the role for the inclusion of stochastic effects in the modeling of complex systems. This has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume will be useful to researchers and graduate students interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in the sciences and engineering.


Book
Rabi N. Bhattacharya : Selected Papers
Authors: ---
ISBN: 3319301888 331930190X Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Birkhäuser,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume presents some of the most influential papers published by Rabi N. Bhattacharya, along with commentaries from international experts, demonstrating his knowledge, insight, and influence in the field of probability and its applications. For more than three decades, Bhattacharya has made significant contributions in areas ranging from theoretical statistics via analytical probability theory, Markov processes, and random dynamics to applied topics in statistics, economics, and geophysics. Selected reprints of Bhattacharya’s papers are divided into three sections: Modes of Approximation, Large Times for Markov Processes, and Stochastic Foundations in Applied Sciences. The accompanying articles by the contributing authors not only help to position his work in the context of other achievements, but also provide a unique assessment of the state of their individual fields, both historically and for the next generation of researchers. Rabi N. Bhattacharya: Selected Papers will be a valuable resource for young researchers entering the diverse areas of study to which Bhattacharya has contributed. Established researchers will also appreciate this work as an account of both past and present developments and challenges for the future.


Book
A Basic Course in Probability Theory
Authors: ---
ISBN: 3319479741 3319479725 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.


Digital
A Basic Course on Probability Theory
Authors: ---
ISBN: 9780387719399 Year: 2007 Publisher: New York Springer Science+Business Media, Inc

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
Rabi N. Bhattacharya : Selected Papers
Authors: ---
ISBN: 9783319301907 Year: 2016 Publisher: Cham Springer International Publishing, Imprint: Birkhäuser

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume presents some of the most influential papers published by Rabi N. Bhattacharya, along with commentaries from international experts, demonstrating his knowledge, insight, and influence in the field of probability and its applications. For more than three decades, Bhattacharya has made significant contributions in areas ranging from theoretical statistics via analytical probability theory, Markov processes, and random dynamics to applied topics in statistics, economics, and geophysics. Selected reprints of Bhattacharya’s papers are divided into three sections: Modes of Approximation, Large Times for Markov Processes, and Stochastic Foundations in Applied Sciences. The accompanying articles by the contributing authors not only help to position his work in the context of other achievements, but also provide a unique assessment of the state of their individual fields, both historically and for the next generation of researchers. Rabi N. Bhattacharya: Selected Papers will be a valuable resource for young researchers entering the diverse areas of study to which Bhattacharya has contributed. Established researchers will also appreciate this work as an account of both past and present developments and challenges for the future.


Digital
Random Walk, Brownian Motion, and Martingales
Authors: ---
ISBN: 9783030789398 9783030789381 9783030789374 Year: 2021 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov-Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.


Digital
Stationary Processes and Discrete Parameter Markov Processes
Authors: ---
ISBN: 9783031009433 9783031009419 9783031009426 9783031031984 9783031031977 Year: 2022 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This textbook explores two distinct stochastic processes that evolve at random: weakly stationary processes and discrete parameter Markov processes. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. After recapping the essentials from Fourier analysis, the book begins with an introduction to the spectral representation of a stationary process. Topics in ergodic theory follow, including Birkhoff's Ergodic Theorem and an introduction to dynamical systems. From here, the Markov property is assumed and the theory of discrete parameter Markov processes is explored on a general state space. Chapters cover a variety of topics, including birth-death chains, hitting probabilities and absorption, the representation of Markov processes as iterates of random maps, and large deviation theory for Markov processes. A chapter on geometric rates of convergence to equilibrium includes a splitting condition that captures the recurrence structure of certain iterated maps in a novel way. A selection of special topics concludes the book, including applications of large deviation theory, the FKG inequalities, coupling methods, and the Kalman filter. Featuring many short chapters and a modular design, this textbook offers an in-depth study of stationary and discrete-time Markov processes. Students and instructors alike will appreciate the accessible, example-driven approach and engaging exercises throughout. A single, graduate-level course in probability is assumed.


Book
Continuous Parameter Markov Processes and Stochastic Differential Equations
Authors: ---
ISBN: 3031332962 Year: 2023 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This graduate text presents the elegant and profound theory of continuous parameter Markov processes and many of its applications. The authors focus on developing context and intuition before formalizing the theory of each topic, illustrated with examples. After a review of some background material, the reader is introduced to semigroup theory, including the Hille–Yosida Theorem, used to construct continuous parameter Markov processes. Illustrated with examples, it is a cornerstone of Feller’s seminal theory of the most general one-dimensional diffusions studied in a later chapter. This is followed by two chapters with probabilistic constructions of jump Markov processes, and processes with independent increments, or Lévy processes. The greater part of the book is devoted to Itô’s fascinating theory of stochastic differential equations, and to the study of asymptotic properties of diffusions in all dimensions, such as explosion, transience, recurrence, existence of steady states, and the speed of convergence to equilibrium. A broadly applicable functional central limit theorem for ergodic Markov processes is presented with important examples. Intimate connections between diffusions and linear second order elliptic and parabolic partial differential equations are laid out in two chapters, and are used for computational purposes. Among Special Topics chapters, two study anomalous diffusions: one on skew Brownian motion, and the other on an intriguing multi-phase homogenization of solute transport in porous media.


Multi
Continuous Parameter Markov Processes and Stochastic Differential Equations
Authors: ---
ISBN: 9783031332968 9783031332944 9783031332951 9783031341533 Year: 2023 Publisher: Cham Springer International Publishing, Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Listing 1 - 10 of 16 << page
of 2
>>
Sort by