Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Choose an application
The book contains a unitary and systematic presentation of both classical and very recent parts of a fundamental branch of functional analysis: linear semigroup theory with main emphasis on examples and applications. There are several specialized, but quite interesting, topics which didn't find their place into a monograph till now, mainly because they are very new. So, the book, although containing the main parts of the classical theory of Co-semigroups, as the Hille-Yosida theory, includes also several very new results, as for instance those referring to various classes of semigr
Semigroups of operators. --- Operators, Semigroups of --- Operator theory
Choose an application
The book contains a unitary and systematic presentation of both classical and very recent parts of a fundamental branch of functional analysis: linear semigroup theory with main emphasis on examples and applications. There are several specialized, but quite interesting, topics which didn't find their place into a monograph till now, mainly because they are very new. So, the book, although containing the main parts of the classical theory of Co-semigroups, as the Hille-Yosida theory, includes also several very new results, as for instance those referring to various classes of semigr
Choose an application
This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields s
Choose an application
The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and
Differential equations. --- Mathematics. --- Set theory. --- Symmetry (Mathematics). --- Differential equations --- Set theory --- Symmetry (Mathematics) --- Calculus --- Mathematics --- Physical Sciences & Mathematics --- Invariance (Mathematics) --- Aggregates --- Classes (Mathematics) --- Ensembles (Mathematics) --- Mathematical sets --- Sets (Mathematics) --- Theory of sets --- 517.91 Differential equations --- Group theory --- Automorphisms --- Logic, Symbolic and mathematical
Choose an application
The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time. The book includes the most important necessary and sufficient conditions for viability starting with Nagumos Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In the latter (i.e. multi-valued) cases, the results (based on two completely new tangency concepts), all due to the authors, are original and extend significantly, in several directions, their well-known classical counterparts. - New concepts for multi-functions as the classical tangent vectors for functions - Provides the very general and necessary conditions for viability in the case of differential inclusions, semilinear and fully nonlinear evolution inclusions - Clarifying examples, illustrations and numerous problems, completely and carefully solved - Illustrates the applications from theory into practice - Very clear and elegant style.
Listing 1 - 6 of 6 |
Sort by
|