Narrow your search

Library

KU Leuven (13)

KBR (1)

Thomas More Kempen (1)


Resource type

dissertation (14)


Language

English (12)

Dutch (2)


Year
From To Submit

2023 (2)

2020 (2)

2019 (1)

2018 (1)

2017 (2)

More...
Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Dissertation
Slibniveauregeling van decantoren.
Author:
Year: 2003 Publisher: Geel Katholieke Hogeschool Kempen. Campus HIK

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dit eindwerk handelt over een onderdeel van de Drinkwaterproductie, namelijk de decantor. In de decantor wordt het ijzer gescheiden van het opgepompte grondwater door het vlokken van het ijzer met kalk. Om de decantorwerking goed te laten verlopen is het belangrijk dat het aflaten van het decantorslib op de juiste momenten gebeurt. Het slib wordt afgelaten door het openen van één of meerdere spuien. Het openen en sluiten van de spuien werd geregeld door instelbare tijdklokjes en vaste tijdrelais. Dit systeem was nog manueel en tijdrovend. Pidpa had als oplossing het automatiseren van het spuisysteem zodat tijd en ook geld uitgespaard worden. Het nieuwe regelproces bestaat erin de toestand van het slibdeken te meten en op basis van die waarden via een LOGO!24 met uitbreidingsmodule de spuien een bepaalde tijd te openen. Het programma in de LOGO! werd na een ingestelde intervaltijd doorlopen. Mijn aandeel in deze evolutie was het optimaliseren, het produceren en het plaatsen van deze sli

Keywords


Dissertation
Optical confinement phenomena in plasmonic nanomaterials with predesigned electromagnetic properties
Authors: ---
ISBN: 9789086494293 Year: 2011 Publisher: Leuven Katholieke Universiteit Leuven

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Theses


Dissertation
Vortex dynamica in hybride supergeleider/ferromagneet nanosystemen.
Authors: --- ---
Year: 2007 Publisher: Leuven K.U.Leuven. Faculteit wetenschappen.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Back-Focal-Plane imaging of directional plasmonic nanoantennas
Authors: --- --- ---
Year: 2015 Publisher: Leuven : KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Antennes zijn alom tegenwoordig in ons dagelijkse leven. Ze zitten in onze gsm's, radio's, Wi-Fi-routers en op nog veel meer, goed verborgen, plaatsen. Men zou zelfs kunnen stellen dat telkens als er een draadloos signaal moet worden verstuurd, er een antenne aan te pas komt. De omschrijving van een draadloos signaal kan nu zeer breed worden opgenomen. Geluid dat van een radio komt, is bijvoorbeeld zo'n draadloos signaal dat door een antenne wordt uitgezonden. De antenne is dan de luidspreker, waar een elektrisch signaal wordt omgezet in een draadloos signaal, het geluid. De interessante vraag is nu, van waar komt het elektrische signaal dat het geluid produceert? Wel, dit signaal werd door een tweede antenne uit de lucht gepikt. Een eenvoudige radio bestaat dus al uit twee antennes, een die de overal aanwezige radiogolven kan lezen, en een tweede die het signaal van de eerste antenne omzet in geluid. Om samen te vatten hebben we dus dat een antenne een draadloos signaal kan ontvangen, of uitzenden. Wat nu met zichtbaar licht? Dit is ook een draadloos signaal, dus moeten er antennes voor kunnen worden ontworpen. Het probleem met zo'n antennes voor zichtbaar licht is echter dat ze enorm klein moeten worden gemaakt, zo klein als een tiende van de dikte van een haarpijl. Dit maakt dat deze antennes niet meer met het blote oog zichtbaar zijn, maar toch nog zichtbaar licht kunnen uitzenden en ontvangen. Fijn, zou men nu kunnen denken, schaal elk antenne ontwerp dat we kennen tot de dimensies miniem worden en dan hebben we antennes voor zichtbaar licht. Dit is echter niet zo eenvoudig, omdat de fysica in deze omstandigheden manifest verschilt van de fysica van bijvoorbeeld radioantennes. Om zo'n minuscule antennes te kunnen begrijpen is er, voor elk ontwerp, nieuw onderzoek nodig, en zo'n onderzoek gebeurd er in deze thesis. Hierin wordt een specifiek ontwerp onderzocht, waar we vooral geïnteresseerd zijn in een bepaald aspect van de antenne. We onderzoeken namelijk of dit ontwerp licht directioneel kan verstrooien. Dit betekent voor deze antenne dan dat het verticaal invallend licht enkel terug wordt uitgezonden naar links, of enkel terug wordt uitgezonden naar rechts. Dit ontwerp kan dan vergeleken worden met een radio, die afhankelijk van het signaal dat hij detecteert, enkel geluid produceert uit de linker of de rechter luidspreker. Zo'n soort radio, is echter vreemd, storend en heeft totaal geen interessante toepassingen. Voor de gelijkaardige zichtbare licht antenne is dit niet het geval. De toepassingen van deze antenne zijn interessant, nuttig en direct toepasbaar in hoog technologische apparaten. Toch, is dit niet het doel van deze thesis, wat hier in wordt bedreven is fysica, en fysica interesseert zich niet in de toepassingen. Voor ons is aantonen dat we licht kunnen controleren en sturen op een nanometer schaal, al wat telt.

Keywords


Dissertation
Optical Lattice Microscopy
Authors: --- --- ---
Year: 2019 Publisher: Leuven KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluorescence microscopy has become an indispensable tool in biology and medicine. It is routinely used in drug development, to diagnose health disorders and in DNA sequencing. Despite enormous progress in instrumentation and deployment, high-resolution microscopes remain expensive, bulky devices that require skilled operators. As a consequence, they are found only in specialized labs, limiting their accessibility. The next big push in microscopy with large societal impact will come from extremely compact and robust optical systems that will make high-resolution microscopy highly accessible. This push to miniaturization can be facilitated by photonic integrated circuits. These are extremely compact chip-scale devices that are mass-produced using CMOS process technology. All lens-based and state-of-the-art lens-free microscopy solutions use light propagation in three dimensional space to illuminate a sample. For a fluorescence microscope that is miniaturized to be fully on a chip, the illumination is confined to a two dimensional slab-waveguide. By placing the sample on top of the slab region, the fluorescent signal is then activated by the evanescent light in the vicinity of the contact region. When the entire slab region is to be illuminated simultaneously, due to the nature of light, the emitted fluorescence signal will be blurred when detected, making it impossible to reconstruct the image. The challenge is to selectively illuminate the sample. Through interference of multiple laser beams a light pattern can be generated in the slab waveguide. Such patterns can be in general classified as so-called moiré patterns, a curious geometrical phenomenon of periodic patterns that are made to overlap. The theory of generating structured illumination with full control over its geometrical features using the theory of moiré patterns is not sufficiently developed in the literature. In this thesis, a robust mathematical framework is developed and an algorithm to design various illumination patterns that are suitable for fluorescence microscopy is proposed.

Keywords


Dissertation
System model for integrated photonics-based microscopy

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluorescence microscopy is an important tool for every biologist, and in recent years huge progress was made in increasing the resolution and image quality. This progress comes at the cost of bulky equipment, expensive optical setups and the requirement of highly skilled operators. In the IROCSIM project at imec, a world leading research center for nanotechnology, a new type of microscopy is proposed. By using photonic integrated circuits, combined with a monolithic integrated CMOS imager all free-space optics are eliminated and a fluorescence microscope can be fully integrated on a chip, making it affordable, portable and easy to use. The resolution is maintained by using dedicated structured illumination patterns based on interference of light from different waveguides. The excitation of the sample is based on total internal reflection (TIRF), providing high axial resolution and leading to high signal-to-background ratios. In this thesis a system model for integrated photonics-based microscopy is developed to guide the design optimization process of the microscopy chips. The system model helps in understanding the combination of on-chip waveguide-based excitation of the sample and lens-free imaging with an on-chip integrated imager. In the model, all parts of the on-chip microscope are included, starting with the photonic integrated circuit, the generation of illumination patterns, the TIRF-based sample excitation, the optical filter and the monolithic integrated CMOS imager. The process of excitation and emission of the fluorophores is modeled, and a simulation is included to determine the radiation pattern of a fluorophore close to a planar interface. Fluorophores close to the interface were found to have a highly structured radiation pattern strongly affecting spatial distribution of light on the image sensor. The model developed in this thesis provides deep insight in the important design parameters and speeds up the prototyping of a microscopy technique that will revolutionize the field of fluorescence microscopy. Furthermore it provides a flexible framework that can be used to characterize other waveguide-based microscopy techniques.

Keywords


Dissertation
Modelling and characterization of on-chip fluorescence microscopy devices based on integrated image sensors: disclosing the system PSF

Loading...
Export citation

Choose an application

Bookmark

Abstract

In life sciences, fluorescence microscopy forms an indispensable technique which has led to numerous discoveries. In pursuit of an ever-increasing resolution that challenges fundamental limits, sophisticated microscopes have become bulky and expensive. A new opportunity arises when the most quintessential element of these devices - the lens - is removed and all other components are integrated on-chip. This is how the IROCSIM concept is born. The recently fabricated proof-of-principle chip features an interference-based total internal reflection fluorescence (TIRF) excitation scheme along with an integrated emission filter and camera, capable of performing fluorescence microscopy completely on-chip. Despite all efforts that went into designing this device, only little is known so far about its fundamental response and the expected signal-to-noise ratio (SNR). To unveil this fundamental response and open the path to further characterization, a dual approach is handled in this thesis. First, a semi-analytical system model is presented in detail based on an elaborate theoretical framework that factors in all relevant radiation sources and their near-field interactions with the chipstack. This model is verified using commercial FDTD software, and can provide properly normalized physical quantities of interest at the interface with the integrated imager in a fraction of the time required by the FDTD software. Upon inspecting the idealized response of the imager to these simulated quantities it is shown that, despite the absence of any form of magnification, the resulting image has a point spread function (PSF)-limited resolution rather than a pixel-limited resolution for the IROCSIM device. To assess the impact of the imager as a part of the monolithically integrated device rather than a standalone ideal sensor, the frontside-illuminated (FSI) metallic line architecture and active regions are modeled explicitly using FDTD software. The findings highlight the importance of optical cross-talk between pixels, a strong decrease of signal strength and a slight asymmetry introduced by the active regions. Finally, two proof-of-principle chips are equipped with test samples - a scarce deposition of fluorescent nanobeads - and an experimental setup is realized to characterize the PSF of the individual beads. Results of those measurements show broadening of the PSF compared to the semi-analytical model, confirming that the metallic line effects are significant as suggested by the FDTD simulations. Therefore, future work should incorporate the effect of the metallic lines as well as the angle-dependent response of the CMOS sensor in the model.

Keywords


Dissertation
Test sample development for demonstration and resolution assessment of on-chip fluorescence microscopy

Loading...
Export citation

Choose an application

Bookmark

Abstract

High-resolution fluorescence microscopy systems are inevitable for modern life science research. However, these devices are bulky and expensive. Ongoing effort is being made to go to compact and cost-effective systems through the development of on-chip microscopy techniques. On-chip approaches employ the evanescent field at the surface of waveguides for sample illumination. However, the implementation of microscopes on photonic chips raises the need for new test sample preparation and imaging protocols. The traditional microscopy system is inherently flexible in sample preparation. From glass microscope slides to cell cultures in microwell plates, samples can simply be inserted in the light path of the microscopy system. In addition, assessment of the attainable lateral resolution of (new) fluorescence microscopy techniques can be done using commercial, ready-to-use and standardized microscopy slides. In on-chip microscopy devices, samples need to be brought directly on chip. Therefore, sample preparation needs to be redefined. Working protocols are developed for two commonly used test samples: fixed and stained adhesive cells and sub-resolution fluorescent beads. Test sample quality is evaluated in light of application for lateral resolution assessment in on-chip microscopy devices. Assessment parameters include the sample density and position with respect to the waveguide surface. The potential of these test samples for practical lateral resolution assessment is demonstrated using widefield images. Three methods are employed: practical implementation of the Rayleigh criterion, the full width at half maximum method and Fourier spectrum analysis. The results underline that theoretical resolution limits are not always experimentally obtained due to both limitations of the test samples and of the assessment technique. Finally, DNA origami nanorulers are shown to be successfully immobilized on chip, and are therefore very promising as a biological calibration standard for on-chip microscopy techniques. If the test sample quality and suitability for lateral resolution assessment can be verified by on-chip fluorescence microscopy techniques in the future, the developed working protocols could be routinely applied for demonstration and assessment of newly developed microscopy systems.

Keywords


Dissertation
Integrated Optically Detected Electron Spin Resonance

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optical detection of Electron Spin Resonances (ESR) in the electron ground state of the Nitrogen Vacancy (NV) centre in diamond has paved the way for all-optical magnetic field sensing. NV-centres can be embedded within diamond crystals, thin-films, nanodiamonds, sensing arrays etc. The atomic scale size of this lattice defect enables nanometre-scale spatial resolution and (sub-)nanotesla sensitivity. This makes the NV-centre a unique quantum system that can be deployed in a wide range of fundamental research fields like material sciences, or technological applications like nano MRI amongst others. The two properties that make all this possible are optically induced spin polarization and ESR within the NV-centre's electron ground state. Optical detection of the Zeeman shift of the ground state spin levels when an external magnetic field is present, allows high-sensitivity magnetometry. In this master's thesis, both experimental work and simulations are performed to study and determine the sensitivity of nanodiamonds in a hybrid silicon nitride photonic structure. This structure consists of silicon nitride waveguides on top of a quartz substrate. The goal was to verify and quantify the achievable sensitivity of this structure. Excitation of the NV-centres was performed by the evanescent tail of 532 nm laser light that was coupled into the waveguide. Experiments were carried out in a modified confocal microscope setup. A reference point measurement on a diamond crystal was done to compare the sensitivity achieved with nanodiamonds to. The simulations carried out, had the goal to verify whether modifications to the waveguide structure could result in a better excitation and collection efficiency.

Keywords


Dissertation
Game theory for the design of photonic integrated microscopy
Authors: --- --- --- ---
Year: 2023 Publisher: Leuven KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluorescence microscopy is a key technique for research in biology, medicine etc. Certain molecules, called fluorophores, emit light in a specific colour when they are illuminated. The miniaturisation of a fluorescence microscope onto a chip would make the technique more widely accessible. It would also make it suitable for applications that need fast and parallel analysis, like DNA sequencing. The functioning of a chip for fluorescence microscopy contains several interesting elements. Light from a laser is transported on the chip by waveguides, and these waveguides send light beams from different directions into a central region where an interference pattern forms. The fluorophores within the sample placed on top of the central region feel this light. They start to emit their own light that can be captured with a CMOS sensor, a chip similar to a normal camera. However, the captured light creates blurry pictures, because it is not focused like with normal lenses. Only illuminating specific spots instead of the full sample makes it possible to calculate the origin of the captured light, since we know which part was illuminated. These light spots can then be moved to scan over the entire sample and create a detailed image. The goal is now to design a chip with these abilities. Crossing waves create interference patterns, and interference patterns with bright spots at regular locations are called optical lattices. Not any optical lattice is suitable for structured illumination, it is important that the spots are bright enough and that there is enough distance between them. The integer lattice method, developed by D. Kouznetsov, provides a systematic way of investigating possible lattices, and it also defines how they can be created and translated. This led to the currently existing design of an optical lattice-generating chip. It is 5.6 mm x 5.6 mm, but a lattice is only in the central region of 100 μm x 100 μm generated. This is not efficient and therefore, an alternative way to design a compact chip is desired. A computer can simulate the pattern generated for a device and optimise this for a lattice. This process is called inverse design and produces compact, but irregular devices. Now, the optical lattice can not be translated any more to scan the sample. In this thesis, explainable AI is used to extract design concepts for a compact, regular optical lattice-generating chip. Shapley values, a form of explainable AI, originate from game theory and can indicate the regions in an image most relevant for a neural network. A neural network is a layered structure of mathematical calculations with tunable parameters able to perform very complex tasks. With inverse design, a large database of two classes of optical lattice-generating devices was created, and the neural network was trained on this database to distinguish devices generating different optical lattices. The Shapley values of the dataset with respect to this network were computed and analysed. Specific features similar to the elements of the integer lattice method were recognized. The Shapley values provided guidance towards a new design. This design is defined by mathematics rather than the seemingly random shapes of inverse design, and it is slightly more compact than inverse designs. Unfortunately, it has similar difficulties in fabrication and translating the optical lattice as inverse design, and further research is needed.

Keywords

Listing 1 - 10 of 14 << page
of 2
>>
Sort by