Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This textbook focuses on cast irons, the second material in production and consumption after steel. The authors describe the Fe-C stable and metastable diagrams from the physical-chemical metallurgy point of view. The main properties of cast irons are presented and justified for all kinds of cast irons: low cost, excellent castability, mechanical properties depending on the graphite morphology (gray irons) and high wear resistance (white irons). The physical metallurgy of highly alloyed cast irons is also described, particularly that one of those used as a consequence of their abrasion, corrosion and heat resistance. The book presents exercises, problems and cases studies, with different sections dedicated to the molding practice. The book finishes with the production cast irons in the cupola furnace. This concise textbook is particularly of interest for students and engineers that work in industries related to cast irons.
Materials science. --- Engineering --- Tribology. --- Corrosion and anti-corrosives. --- Coatings. --- Metals. --- Materials Science. --- Metallic Materials. --- Tribology, Corrosion and Coatings. --- Materials Engineering. --- Materials. --- Metallic elements --- Chemical elements --- Ores --- Metallurgy --- Surface coatings --- Materials --- Surfaces (Technology) --- Coating processes --- Thin films --- Anti-corrosive paint --- Atmospheric corrosion --- Metal corrosion --- Metals --- Rust --- Rustless coatings --- Chemical inhibitors --- Chemistry, Technical --- Fouling --- Weathering --- Paint --- Protective coatings --- Waterproofing --- Friction --- Engineering materials --- Industrial materials --- Engineering design --- Manufacturing processes --- Material science --- Physical sciences --- Corrosion --- Deterioration --- Surfaces --- Chemistry, inorganic. --- Inorganic chemistry --- Chemistry --- Inorganic compounds --- Cast-iron --- Metallurgy. --- Engineering—Materials.
Choose an application
The book covers the most important materials (naturals, metals, ceramics, polymers and composites) to be used mainly as structural engineering materials. Their main applications based on the properties are described in the first chapters of the book: mechanical, physical and chemical. The second part of the book is dedicated to the conceptual design by properties for a certain structural application: stiffness, mechanical strength, toughness, fatigue resistance, creep, etc., taking into account the weight and the cost. One of the chapters of the second part of the book is focused on the heat treatments of steels in order to improve their resistance to fatigue. The book concludes with a critical comparison between materials considering their production, properties and cost, and the forecast about the utilization of the different fields of materials in structural applications.
Materials. --- Surfaces (Physics). --- Structural Materials. --- Materials Engineering. --- Characterization and Evaluation of Materials. --- Physics --- Surface chemistry --- Surfaces (Technology) --- Engineering --- Engineering materials --- Industrial materials --- Engineering design --- Manufacturing processes --- Materials --- Building materials. --- Architectural materials --- Architecture --- Building --- Building supplies --- Buildings --- Construction materials --- Structural materials --- Structural materials. --- Engineering—Materials. --- Materials science. --- Material science --- Physical sciences
Choose an application
The book covers the most important materials (naturals, metals, ceramics, polymers and composites) to be used mainly as structural engineering materials. Their main applications based on the properties are described in the first chapters of the book: mechanical, physical and chemical. The second part of the book is dedicated to the conceptual design by properties for a certain structural application: stiffness, mechanical strength, toughness, fatigue resistance, creep, etc., taking into account the weight and the cost. One of the chapters of the second part of the book is focused on the heat treatments of steels in order to improve their resistance to fatigue. The book concludes with a critical comparison between materials considering their production, properties and cost, and the forecast about the utilization of the different fields of materials in structural applications.
Choose an application
This textbook focuses on cast irons, the second material in production and consumption after steel. The authors describe the Fe-C stable and metastable diagrams from the physical-chemical metallurgy point of view. The main properties of cast irons are presented and justified for all kinds of cast irons: low cost, excellent castability, mechanical properties depending on the graphite morphology (gray irons) and high wear resistance (white irons). The physical metallurgy of highly alloyed cast irons is also described, particularly that one of those used as a consequence of their abrasion, corrosion and heat resistance. The book presents exercises, problems and cases studies, with different sections dedicated to the molding practice. The book finishes with the production cast irons in the cupola furnace. This concise textbook is particularly of interest for students and engineers that work in industries related to cast irons.
Metals and their compounds --- Inorganic chemistry --- Materials sciences --- Applied physical engineering --- Engineering sciences. Technology --- tribologie --- materiaalkennis --- anorganische chemie --- metalen --- corrosie
Listing 1 - 4 of 4 |
Sort by
|