Listing 1 - 10 of 25 | << page >> |
Sort by
|
Choose an application
In this brief, Vladimir Uversky discusses the paradigm-shifting phenomenon of intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs). Beginning with an introduction to the concept of protein intrinsic disorder, Uversky then goes on to describe the peculiar amino acid sequences of IDPs, their structural heterogeneity, typical functions and disorder-based binding modes. In the final sections, Uversky discusses IDPs in human diseases and as potential drug targets. This volume provides a snapshot to researchers entering the field as well as providing a current overview for more experienced scientists in related areas.
Proteins --- Structure. --- Conformation. --- Protein conformation --- Biochemistry. --- Protein Structure. --- Medicinal Chemistry. --- Biochemistry, general. --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Biology --- Chemistry --- Medical sciences --- Composition --- Proteins . --- Medicinal chemistry. --- Chemistry, Medical and pharmaceutical --- Chemistry, Pharmaceutical --- Drug chemistry --- Drugs --- Medical chemistry --- Medicinal chemistry --- Pharmacochemistry --- Proteids --- Biomolecules --- Polypeptides --- Proteomics
Choose an application
Droplets of Life: Membrane-Less Organelles, Biomolecular Condensates, and Biological Liquid–Liquid Phase Separation provides foundational information on the biophysics, biogenesis, structure, functions, and roles of membrane-less organelles. The study of liquid–liquid phase separation has attracted a lot of attention from disciplines such as cell biology, biophysics, biochemistry, and others trying to understand how, why, and what roles these condensates play in homeostasis and disease states in living organisms. This book's editor recruited a group of international experts to provide a current and authoritative overview of all aspects associated with this exciting area. Sections introduce membrane-less organelles (MLOs) and biomolecular condensates; MLOs in different sizes, shapes, and composition; and the formation of MLOs due to phase separation and how it can tune reactions, organize the intracellular environment, and provide a role in cellular fitness.
Cell organelles. --- Organelles, Cell --- Cytoplasm --- Biomolecular Condensates --- Organelles --- Phase Separation --- Biomolecular Condensates. --- Organelles. --- Phase Separation.
Choose an application
In this brief, Vladimir Uversky discusses the paradigm-shifting phenomenon of intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs). Beginning with an introduction to the concept of protein intrinsic disorder, Uversky then goes on to describe the peculiar amino acid sequences of IDPs, their structural heterogeneity, typical functions and disorder-based binding modes. In the final sections, Uversky discusses IDPs in human diseases and as potential drug targets. This volume provides a snapshot to researchers entering the field as well as providing a current overview for more experienced scientists in related areas.
Chemical structure --- General biochemistry --- Biology --- Clinical chemistry --- moleculaire structuur --- klinische chemie --- medische chemie --- biochemie --- biologie --- eiwitten --- moleculaire biologie
Choose an application
Choose an application
Choose an application
Bio-Nanoimaging: Protein Misfolding & Aggregation provides a unique introduction to both novel and established nanoimaging techniques for visualization and characterization of misfolded and aggregated protein species. The book is divided into three sections covering: - Nanotechnology and nanoimaging technology, including cryoelectron microscopy of beta(2)-microglobulin, studying amyloidogensis by FRET; and scanning tunneling microscopy of protein deposits - Polymorphisms of protein misfolded and aggregated species, including fibrillar polymorphism, amyloid-like protofibrils, and insulin olig.
Choose an application
This book is an embodiment of a series of articles that were published as part of a Special Issue of Biomolecules. It is dedicated to exploring the role of intrinsically disordered proteins (IDPs) in various chronic diseases. The main goal of the articles is to describe recent progress in elucidating the mechanisms by which IDPs cause various human diseases, such as cancer, cardiovascular disease, amyloidosis, neurodegenerative diseases, diabetes, and genetic diseases, to name a few. Contributed by leading investigators in the field, this compendium serves as a valuable resource for researchers, clinicians as well as postdoctoral fellows and graduate students
Research & information: general --- IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid–liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order–disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau–microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design --- n/a --- liquid-liquid phase separation --- order-disorder transition --- tau-microtubule association
Choose an application
This book is an embodiment of a series of articles that were published as part of a Special Issue of Biomolecules. It is dedicated to exploring the role of intrinsically disordered proteins (IDPs) in various chronic diseases. The main goal of the articles is to describe recent progress in elucidating the mechanisms by which IDPs cause various human diseases, such as cancer, cardiovascular disease, amyloidosis, neurodegenerative diseases, diabetes, and genetic diseases, to name a few. Contributed by leading investigators in the field, this compendium serves as a valuable resource for researchers, clinicians as well as postdoctoral fellows and graduate students
IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid–liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order–disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau–microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design --- n/a --- liquid-liquid phase separation --- order-disorder transition --- tau-microtubule association
Choose an application
This book is an embodiment of a series of articles that were published as part of a Special Issue of Biomolecules. It is dedicated to exploring the role of intrinsically disordered proteins (IDPs) in various chronic diseases. The main goal of the articles is to describe recent progress in elucidating the mechanisms by which IDPs cause various human diseases, such as cancer, cardiovascular disease, amyloidosis, neurodegenerative diseases, diabetes, and genetic diseases, to name a few. Contributed by leading investigators in the field, this compendium serves as a valuable resource for researchers, clinicians as well as postdoctoral fellows and graduate students
Research & information: general --- IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid-liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order-disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau-microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design
Choose an application
Listing 1 - 10 of 25 | << page >> |
Sort by
|