Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

ULB (1)

ULiège (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (4)

Listing 1 - 4 of 4
Sort by

Book
Postharvest Management of Fruits and Vegetables
Author:
ISBN: 3036535357 3036535365 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Postharvest Management of Fruits and Vegetables
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

All articles in the presented collection are high-quality examples of both basic and applied research. The publications collectively refer to apples, bananas, cherries, kiwi fruit, mango, grapes, green bean pods, pomegranates, sweet pepper, sweet potato tubers and tomato and are aimed at improving the postharvest quality and storage extension of fresh produce. The experimental works include the following postharvest treatments: 1-methylcycloprpene, methyl jasmonate, immersion in edible coatings (aloe, chitosan, plant extracts, nanoemulsions, ethanol, ascorbic acid and essential oils solutions), heat treatments, packaging, innovative packaging materials, low temperature, low O2 and high CO2 modified atmosphere, and non-destructible technique development to measure soluble solids with infra- and near infra-red spectroscopy. Preharvest treatments were also included, such as chitosan application, fruit kept on the vine, and cultivation under far-red light. Quality assessment was dependent on species, treatment and storage conditions in each case and included evaluation of color, bruising, water loss, organoleptic estimation and texture changes in addition to changes in the concentrations of sugars, organic acids, amino acids, fatty acids, carotenoids, tocopherols, phytosterols, phenolic compounds and aroma volatiles. Gene transcription related to ethylene biosynthesis, modification of cell wall components, synthesis of aroma compounds and lipid metabolism were also the focus of some of the articles.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- apple flesh --- absorption --- scattering --- soluble sugars --- 905–1650 nm --- cell wall modification --- chitosan --- ethylene biosynthesis --- fruit quality --- lignin metabolism --- postharvest quality --- preharvest treatment --- amidated graphene oxide --- sulfonated poly ether ether ketone --- modified atmosphere film --- cherry tomatoes --- food packaging --- post-harvest treatment --- jasmonate --- metabolite profiling --- lipid metabolism --- Solanum lycopersicum --- ethylene inhibition --- modified atmosphere --- carbon dioxide --- phenols --- antioxidant --- ethanol --- acetaldehyde --- Phaseolus vulgaris --- peppermint --- tea tree --- storability --- minimal processed --- ready to eat --- internal packaging --- modified atmosphere packaging --- storage quality --- transpiration --- water loss --- chilling injury --- controlled atmosphere --- far-red --- aroma --- blanching --- chilling --- synthetic pathway --- volatile --- maturity --- tomato --- flavor --- postharvest --- bruise susceptibility --- apples --- mechanical shock --- transportation --- molded fiber --- expanded polystyrene --- sweet potato --- postharvest treatment --- edible quality --- transcriptome --- mango --- bioactive --- coatings --- biodegradable --- Aloe vera --- nanotechnology --- wax coating --- natural antimicrobials --- essential oils --- nanocoatings --- post-harvest --- bioactive compounds --- quality --- preservation methods --- nanomaterials --- Capsicum annuum L. --- hot water treatment --- ascorbate-glutathione cycle --- Musa AAA --- ALDH --- aroma volatile --- ester --- enzyme characteristics --- Prunus avium --- edible coatings --- Opuntia ficus-indica extracts --- storage --- anthocyanins --- phenolic compounds --- total antioxidant capacity


Book
Postharvest Management of Fruits and Vegetables
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

All articles in the presented collection are high-quality examples of both basic and applied research. The publications collectively refer to apples, bananas, cherries, kiwi fruit, mango, grapes, green bean pods, pomegranates, sweet pepper, sweet potato tubers and tomato and are aimed at improving the postharvest quality and storage extension of fresh produce. The experimental works include the following postharvest treatments: 1-methylcycloprpene, methyl jasmonate, immersion in edible coatings (aloe, chitosan, plant extracts, nanoemulsions, ethanol, ascorbic acid and essential oils solutions), heat treatments, packaging, innovative packaging materials, low temperature, low O2 and high CO2 modified atmosphere, and non-destructible technique development to measure soluble solids with infra- and near infra-red spectroscopy. Preharvest treatments were also included, such as chitosan application, fruit kept on the vine, and cultivation under far-red light. Quality assessment was dependent on species, treatment and storage conditions in each case and included evaluation of color, bruising, water loss, organoleptic estimation and texture changes in addition to changes in the concentrations of sugars, organic acids, amino acids, fatty acids, carotenoids, tocopherols, phytosterols, phenolic compounds and aroma volatiles. Gene transcription related to ethylene biosynthesis, modification of cell wall components, synthesis of aroma compounds and lipid metabolism were also the focus of some of the articles.

Keywords

apple flesh --- absorption --- scattering --- soluble sugars --- 905–1650 nm --- cell wall modification --- chitosan --- ethylene biosynthesis --- fruit quality --- lignin metabolism --- postharvest quality --- preharvest treatment --- amidated graphene oxide --- sulfonated poly ether ether ketone --- modified atmosphere film --- cherry tomatoes --- food packaging --- post-harvest treatment --- jasmonate --- metabolite profiling --- lipid metabolism --- Solanum lycopersicum --- ethylene inhibition --- modified atmosphere --- carbon dioxide --- phenols --- antioxidant --- ethanol --- acetaldehyde --- Phaseolus vulgaris --- peppermint --- tea tree --- storability --- minimal processed --- ready to eat --- internal packaging --- modified atmosphere packaging --- storage quality --- transpiration --- water loss --- chilling injury --- controlled atmosphere --- far-red --- aroma --- blanching --- chilling --- synthetic pathway --- volatile --- maturity --- tomato --- flavor --- postharvest --- bruise susceptibility --- apples --- mechanical shock --- transportation --- molded fiber --- expanded polystyrene --- sweet potato --- postharvest treatment --- edible quality --- transcriptome --- mango --- bioactive --- coatings --- biodegradable --- Aloe vera --- nanotechnology --- wax coating --- natural antimicrobials --- essential oils --- nanocoatings --- post-harvest --- bioactive compounds --- quality --- preservation methods --- nanomaterials --- Capsicum annuum L. --- hot water treatment --- ascorbate-glutathione cycle --- Musa AAA --- ALDH --- aroma volatile --- ester --- enzyme characteristics --- Prunus avium --- edible coatings --- Opuntia ficus-indica extracts --- storage --- anthocyanins --- phenolic compounds --- total antioxidant capacity


Book
Postharvest Management of Fruits and Vegetables
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

All articles in the presented collection are high-quality examples of both basic and applied research. The publications collectively refer to apples, bananas, cherries, kiwi fruit, mango, grapes, green bean pods, pomegranates, sweet pepper, sweet potato tubers and tomato and are aimed at improving the postharvest quality and storage extension of fresh produce. The experimental works include the following postharvest treatments: 1-methylcycloprpene, methyl jasmonate, immersion in edible coatings (aloe, chitosan, plant extracts, nanoemulsions, ethanol, ascorbic acid and essential oils solutions), heat treatments, packaging, innovative packaging materials, low temperature, low O2 and high CO2 modified atmosphere, and non-destructible technique development to measure soluble solids with infra- and near infra-red spectroscopy. Preharvest treatments were also included, such as chitosan application, fruit kept on the vine, and cultivation under far-red light. Quality assessment was dependent on species, treatment and storage conditions in each case and included evaluation of color, bruising, water loss, organoleptic estimation and texture changes in addition to changes in the concentrations of sugars, organic acids, amino acids, fatty acids, carotenoids, tocopherols, phytosterols, phenolic compounds and aroma volatiles. Gene transcription related to ethylene biosynthesis, modification of cell wall components, synthesis of aroma compounds and lipid metabolism were also the focus of some of the articles.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- apple flesh --- absorption --- scattering --- soluble sugars --- 905–1650 nm --- cell wall modification --- chitosan --- ethylene biosynthesis --- fruit quality --- lignin metabolism --- postharvest quality --- preharvest treatment --- amidated graphene oxide --- sulfonated poly ether ether ketone --- modified atmosphere film --- cherry tomatoes --- food packaging --- post-harvest treatment --- jasmonate --- metabolite profiling --- lipid metabolism --- Solanum lycopersicum --- ethylene inhibition --- modified atmosphere --- carbon dioxide --- phenols --- antioxidant --- ethanol --- acetaldehyde --- Phaseolus vulgaris --- peppermint --- tea tree --- storability --- minimal processed --- ready to eat --- internal packaging --- modified atmosphere packaging --- storage quality --- transpiration --- water loss --- chilling injury --- controlled atmosphere --- far-red --- aroma --- blanching --- chilling --- synthetic pathway --- volatile --- maturity --- tomato --- flavor --- postharvest --- bruise susceptibility --- apples --- mechanical shock --- transportation --- molded fiber --- expanded polystyrene --- sweet potato --- postharvest treatment --- edible quality --- transcriptome --- mango --- bioactive --- coatings --- biodegradable --- Aloe vera --- nanotechnology --- wax coating --- natural antimicrobials --- essential oils --- nanocoatings --- post-harvest --- bioactive compounds --- quality --- preservation methods --- nanomaterials --- Capsicum annuum L. --- hot water treatment --- ascorbate-glutathione cycle --- Musa AAA --- ALDH --- aroma volatile --- ester --- enzyme characteristics --- Prunus avium --- edible coatings --- Opuntia ficus-indica extracts --- storage --- anthocyanins --- phenolic compounds --- total antioxidant capacity

Listing 1 - 4 of 4
Sort by