Listing 1 - 10 of 10 |
Sort by
|
Choose an application
Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics presents the latest emerging technologies in spectroscopy and advances in established spectroscopic methods. The book presents a guide to research methods in biomolecular spectroscopy, providing comprehensive coverage of developments in the spectroscopic techniques used to study protein structure and dynamics. Seventeen chapters from leading researchers cover key aspects of spectroscopic methods, with each chapter covering structure, folding, and dynamics. This title will help researchers keep up-to-date on the latest novel methods and advances in established methods.
Molecular spectroscopy. --- Molecular structure --- Molecular spectroscopy --- Analysis. --- Spectroscopy, Molecular --- Spectrum analysis --- Molecular spectra --- Structure, Molecular --- Chemical structure --- Structural bioinformatics --- Spectrum Analysis --- Molecular Biology --- methods
Choose an application
This book describes recent important advancements in protein folding dynamics and stability research, as well as explaining fundamentals and examining potential methodological approaches in protein science. In vitro, in silico, and in vivo method based research of how the stability and folding of proteins help regulate the cellular dynamics and impact cell function that are crucial in explaining various physiological and pathological processes. This book offers a comprehensive coverage on various techniques and related recent developments in the experimental and computational methods of protein folding, dynamics, and stability studies. The book is also structured in such a way as to summarize the latest developments in the fiddle and key concepts to ensure that readers can understand advanced concepts as well as the fundamental big picture. And most of all, fresh insights are provided into the convergence of protein science and technology. Protein Folding Dynamics and Stability is an ideal guide to the field that will be of value for all levels of researchers and advanced graduate students with training in biochemical laboratory research.
Proteins. --- Molecular biology. --- Biology. --- Proteins—Synthesis. --- Protein Biochemistry. --- Molecular Biology. --- Biological Sciences. --- Protein Synthesis and Translation. --- Biochemistry --- Life Sciences --- Science
Choose an application
This book describes recent important advancements in protein folding dynamics and stability research, as well as explaining fundamentals and examining potential methodological approaches in protein science. In vitro, in silico, and in vivo method based research of how the stability and folding of proteins help regulate the cellular dynamics and impact cell function that are crucial in explaining various physiological and pathological processes. This book offers a comprehensive coverage on various techniques and related recent developments in the experimental and computational methods of protein folding, dynamics, and stability studies. The book is also structured in such a way as to summarize the latest developments in the fiddle and key concepts to ensure that readers can understand advanced concepts as well as the fundamental big picture. And most of all, fresh insights are provided into the convergence of protein science and technology. Protein Folding Dynamics and Stability is an ideal guide to the field that will be of value for all levels of researchers and advanced graduate students with training in biochemical laboratory research.
Chemistry --- Molecular biology --- Biology --- biologie --- moleculaire biologie --- proteïnen --- Proteins. --- Molecular biology. --- Biology. --- Proteins—Synthesis. --- Protein Biochemistry. --- Molecular Biology. --- Biological Sciences. --- Protein Synthesis and Translation. --- Biochemistry --- Life Sciences --- Science
Choose an application
This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.
Proteins . --- Enzymology. --- Medical genetics. --- Bioinformatics. --- Protein Science. --- Protein Structure. --- Gene Function. --- Bio-informatics --- Biological informatics --- Biology --- Information science --- Computational biology --- Systems biology --- Clinical genetics --- Diseases --- Heredity of disease --- Human genetics --- Medical sciences --- Pathology --- Genetic disorders --- Biochemistry --- Enzymes --- Proteids --- Biomolecules --- Polypeptides --- Proteomics --- Data processing --- Genetic aspects --- Protein Conformation. --- Protein Folding. --- Proteins. --- Enzymes. --- Biocatalysts --- Molecular Mechanisms of Pharmacological Action --- Gene Products, Protein --- Gene Proteins --- Protein Gene Products --- Proteins, Gene --- Protein Folding, Globular --- Folding, Globular Protein --- Folding, Protein --- Foldings, Globular Protein --- Foldings, Protein --- Globular Protein Folding --- Globular Protein Foldings --- Protein Foldings --- Protein Foldings, Globular --- Proteostasis --- Protein Multimerization --- Intrinsically Disordered Proteins --- Conformation, Protein --- Conformations, Protein --- Protein Conformations --- Proteins --- Protein Folding --- (Produktform)Electronic book text. --- Proteïnes --- Bioinformàtica --- Informàtica biològica --- Ciències de la informació --- Biologia computacional --- Biomolècules --- Albúmines --- Apoproteïnes --- Conformació de proteïnes --- Enzims --- Factors de transcripció --- Glicoproteïnes --- Lipoproteïnes --- Nucleoproteïnes --- Pèptids --- Prions --- Protamines --- Proteïnes citosquelètiques --- Proteïnes de membrana --- Proteïnes de la sang --- Proteïnes recombinants --- Proteïnes supressores de tumors --- Receptors cel·lulars --- Ubiqüitina --- Xaperones moleculars --- Proteòmica
Choose an application
"Advances in Protein Molecular and Structural Biology Methods offers a complete overview of the latest tools and methods applicable to the study of proteins at the molecular and structural level. The book begins with sections exploring tools to optimize recombinant protein expression and biophysical techniques such as fluorescence spectroscopy, NMR, mass spectrometry, cryo-electron microscopy, and X-ray crystallography. It then moves towards computational approaches, considering structural bioinformatics, molecular dynamics simulations, and deep machine learning technologies. The book also covers methods applied to intrinsically disordered proteins (IDPs)followed by chapters on protein interaction networks, protein function, and protein design and engineering."--
Molecular biology. --- Proteins --- Structure. --- Molecular biochemistry --- Molecular biophysics --- Biochemistry --- Biophysics --- Biomolecules --- Systems biology --- Molecular Biology --- Biochemical Phenomena --- methods
Choose an application
This book provides an overview of the essential characteristics and clinical applications of therapeutic proteins against human diseases, including cancers, immune disorders, infections, and other diseases. It presents the latest advancements in protein engineering techniques for producing desirable therapeutic proteins. The book also covers the strategies used to formulate and deliver systemic therapeutic proteins, approved protein therapeutics and their targets, and pharmacogenetic biomarkers. Further, it discusses challenges associated with the clinical implications of therapeutic proteins, including safety, immunogenicity, protein stability, degradation, and efficacy. It illustrates the development of biosimilar antibodies, optimization strategies for producing biobetter antibodies, and presents fundamental concepts about biosuperior therapeutics. Lastly, it includes a discussion about protein-based vaccines against bacterial and viral infections.
Therapeutics. --- Diseases. --- Proteins. --- Proteids --- Biomolecules --- Polypeptides --- Proteomics --- Human beings --- Illness --- Illnesses --- Morbidity --- Sickness --- Sicknesses --- Medicine --- Epidemiology --- Health --- Pathology --- Sick --- Medical treatment --- Therapy --- Treatment of diseases --- Treatments for diseases --- Clinical medicine --- Diseases --- Protein drugs. --- Protein pharmaceuticals --- Drugs
Choose an application
This book provides an overview of the essential characteristics and clinical applications of therapeutic proteins against human diseases, including cancers, immune disorders, infections, and other diseases. It presents the latest advancements in protein engineering techniques for producing desirable therapeutic proteins. The book also covers the strategies used to formulate and deliver systemic therapeutic proteins, approved protein therapeutics and their targets, and pharmacogenetic biomarkers. Further, it discusses challenges associated with the clinical implications of therapeutic proteins, including safety, immunogenicity, protein stability, degradation, and efficacy. It illustrates the development of biosimilar antibodies, optimization strategies for producing biobetter antibodies, and presents fundamental concepts about biosuperior therapeutics. Lastly, it includes a discussion about protein-based vaccines against bacterial and viral infections.
Choose an application
Choose an application
Chemistry --- Biomathematics. Biometry. Biostatistics --- Enzymology --- Human genetics --- medische genetica --- bio-informatica --- proteïnen --- enzymen
Choose an application
This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.
Chemistry --- Biomathematics. Biometry. Biostatistics --- Enzymology --- Human genetics --- medische genetica --- bio-informatica --- proteïnen --- enzymen
Listing 1 - 10 of 10 |
Sort by
|