Narrow your search

Library

AP (1)

KDG (1)

KU Leuven (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)


Resource type

book (1)

digital (1)


Language

English (2)


Year
From To Submit

2015 (2)

Listing 1 - 2 of 2
Sort by

Book
High Dimensional Neurocomputing : Growth, Appraisal and Applications
Author:
ISBN: 9788132220749 8132220730 9788132220732 8132220749 Year: 2015 Publisher: New Delhi : Springer India : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book presents a coherent understanding of computational intelligence from the perspective of what is known as "intelligent computing" with high-dimensional parameters. It critically discusses the central issue of high-dimensional neurocomputing, such as quantitative representation of signals, extending the dimensionality of neuron, supervised and unsupervised learning and design of higher order neurons. The strong point of the book is its clarity and ability of the underlying theory to unify our understanding of high-dimensional computing where conventional methods fail. The plenty of application oriented problems are presented for evaluating, monitoring and maintaining the stability of adaptive learning machine. Author has taken care to cover the breadth and depth of the subject, both in the qualitative as well as quantitative way. The book is intended to enlighten the scientific community, ranging from advanced undergraduates to engineers, scientists and seasoned researchers in computational intelligence.


Digital
High Dimensional Neurocomputing : Growth, Appraisal and Applications
Author:
ISBN: 9788132220749 9788132220756 9788132220732 9788132228943 Year: 2015 Publisher: New Delhi Springer India

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book presents a coherent understanding of computational intelligence from the perspective of what is known as "intelligent computing" with high-dimensional parameters. It critically discusses the central issue of high-dimensional neurocomputing, such as quantitative representation of signals, extending the dimensionality of neuron, supervised and unsupervised learning and design of higher order neurons. The strong point of the book is its clarity and ability of the underlying theory to unify our understanding of high-dimensional computing where conventional methods fail. The plenty of application oriented problems are presented for evaluating, monitoring and maintaining the stability of adaptive learning machine. Author has taken care to cover the breadth and depth of the subject, both in the qualitative as well as quantitative way. The book is intended to enlighten the scientific community, ranging from advanced undergraduates to engineers, scientists and seasoned researchers in computational intelligence.

Listing 1 - 2 of 2
Sort by