Listing 1 - 10 of 10 |
Sort by
|
Choose an application
Choose an application
Choose an application
This open access book covers the most cutting-edge and hot research topics and fields of post-quantum cryptography. The main purpose of this book is to focus on the computational complexity theory of lattice ciphers, especially the reduction principle of Ajtai, in order to fill the gap that post-quantum ciphers focus on the implementation of encryption and decryption algorithms, but the theoretical proof is insufficient. In Chapter 3, Chapter 4 and Chapter 6, author introduces the theory and technology of LWE distribution, LWE cipher and homomorphic encryption in detail. When using random analysis tools, there is a problem of "ambiguity" in both definition and algorithm. The greatest feature of this book is to use probability distribution to carry out rigorous mathematical definition and mathematical demonstration for various unclear or imprecise expressions, so as to make it a rigorous theoretical system for classroom teaching and dissemination. Chapters 5 and 7 further expand and improve the theory of cyclic lattice, ideal lattice and generalized NTRU cryptography. This book is used as a professional book for graduate students majoring in mathematics and cryptography, as well as a reference book for scientific and technological personnel engaged in cryptography research.
Macroeconomics --- Applied mathematics --- Post-Quantum Cryptography --- Gauss Lattice --- Reduction --- Learning With Errors --- FHE --- Fourier transform --- Ideal lattice --- NTRU --- Smoothing parameters --- Discrete Gaussian measure
Choose an application
This open access book covers the most cutting-edge and hot research topics and fields of post-quantum cryptography. The main purpose of this book is to focus on the computational complexity theory of lattice ciphers, especially the reduction principle of Ajtai, in order to fill the gap that post-quantum ciphers focus on the implementation of encryption and decryption algorithms, but the theoretical proof is insufficient. In Chapter 3, Chapter 4 and Chapter 6, author introduces the theory and technology of LWE distribution, LWE cipher and homomorphic encryption in detail. When using random analysis tools, there is a problem of "ambiguity" in both definition and algorithm. The greatest feature of this book is to use probability distribution to carry out rigorous mathematical definition and mathematical demonstration for various unclear or imprecise expressions, so as to make it a rigorous theoretical system for classroom teaching and dissemination. Chapters 5 and 7 further expand and improve the theory of cyclic lattice, ideal lattice and generalized NTRU cryptography. This book is used as a professional book for graduate students majoring in mathematics and cryptography, as well as a reference book for scientific and technological personnel engaged in cryptography research.
Post-Quantum Cryptography --- Gauss Lattice --- Reduction --- Learning With Errors --- FHE --- Fourier transform --- Ideal lattice --- NTRU --- Smoothing parameters --- Discrete Gaussian measure
Choose an application
This open access book covers the most cutting-edge and hot research topics and fields of post-quantum cryptography. The main purpose of this book is to focus on the computational complexity theory of lattice ciphers, especially the reduction principle of Ajtai, in order to fill the gap that post-quantum ciphers focus on the implementation of encryption and decryption algorithms, but the theoretical proof is insufficient. In Chapter 3, Chapter 4 and Chapter 6, author introduces the theory and technology of LWE distribution, LWE cipher and homomorphic encryption in detail. When using random analysis tools, there is a problem of "ambiguity" in both definition and algorithm. The greatest feature of this book is to use probability distribution to carry out rigorous mathematical definition and mathematical demonstration for various unclear or imprecise expressions, so as to make it a rigorous theoretical system for classroom teaching and dissemination. Chapters 5 and 7 further expand and improve the theory of cyclic lattice, ideal lattice and generalized NTRU cryptography. This book is used as a professional book for graduate students majoring in mathematics and cryptography, as well as a reference book for scientific and technological personnel engaged in cryptography research.
Macroeconomics --- Applied mathematics --- Post-Quantum Cryptography --- Gauss Lattice --- Reduction --- Learning With Errors --- FHE --- Fourier transform --- Ideal lattice --- NTRU --- Smoothing parameters --- Discrete Gaussian measure
Choose an application
Choose an application
This textbook introduces bioinformatics to students in mathematics with no biology background assumed and it provides solid mathematical tools for biology students along with an understanding of how to implement them in bioinformatics problems. In addition to the basics, the text offers new approaches to understanding biological sequences. The concise presentation distinguishes itself from others on the subject, discussing and providing principles that relate to current open problems in bioinformatics as well as considering a variety of models. The convex hull principle is highlighted, opening a new interdisciplinary research area at the intersection of biology, mathematics, and computer science. Prerequisites include first courses in linear algebra, probability and statistics, and mathematical analysis. Researchers in mathematics, biology, and math-biology, will also find aspects of this text useful. This textbook is written based on the authors' research works that have been published in various journals along with the lecture notes used when teaching bioinformatics courses at the University of Illinois at Chicago and at Tsinghua University. The content may be divided into two parts. The first part includes three chapters, introducing some basic concepts. Chapter 1 provides biological background in molecular biology for mathematicians. Chapter 2 describes biological databases that are commonly used. Chapter 3 is concerned with alignment methods including global/local alignment, heuristic alignment, and multiple alignment. The second part consisting of five chapters, describes several bioinformatics principles using a rigorous mathematical formulation. Chapter 4 introduces the time-frequency spectral principle and its applications in bioinformatics. In Chapters 5 and 6, two strategies are used, the graphical representation and the natural vector method, to represent biological sequences, and conduct sequence comparison and phylogenetic analysis without alignment. Chapter 7 presents the convex hull principle and shows how it can be used to mathematically determine whether a certain amino acid sequence can be a protein. The last chapter summarizes additional mathematical ideas relating to sequence comparisons, such as new feature vectors and metrics. This part focuses on the governing principle in biology and provides plenty of alignment-free methods, which cannot be found in any other book.
Bioinformatics. --- Mathematics. --- Applications of Mathematics. --- Bioinformàtica --- Aplicacions (Matemàtica)
Choose an application
Choose an application
Mathematics --- Biomathematics. Biometry. Biostatistics --- toegepaste wiskunde --- bio-informatica --- wiskunde
Choose an application
Listing 1 - 10 of 10 |
Sort by
|