Narrow your search

Library

UGent (5)

ULiège (5)

VUB (5)

AP (4)

KDG (4)

KU Leuven (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

More...

Resource type

book (13)

digital (4)


Language

English (16)


Year
From To Submit

2021 (2)

2019 (2)

2018 (2)

2016 (2)

2008 (3)

More...
Listing 1 - 10 of 16 << page
of 2
>>
Sort by
Symmetry Breaking
Author:
ISBN: 354021318X 3540315365 Year: 2005 Volume: 643 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The intriguing mechanism of spontaneous symmetry breaking is a powerful innovative idea at the basis of most of the recent developments in theoretical physics, from statistical mechanics to many-body theory to elementary particles theory; for infinitely extended systems a symmetric Hamiltonian can account for non symmetric behaviours, giving rise to non symmetric realizations of a physical system. In the first part of this book, devoted to classical field theory, such a mechanism is explained in terms of the occurrence of disjoint sectors and their stability properties and of an improved version of the Noether theorem. For infinitely extended quantum systems, discussed in the second part, the mechanism is related to the occurrence of disjoint pure phases and characterized by a symmetry breaking order parameter, for which non perturbative criteria are discussed, following Wightman, and contrasted with the standard Goldstone perturbative strategy. The Goldstone theorem is discussed with a critical look at the hypotheses that emphasizes the crucial role of the dynamical delocalization induced by the interaction range. The Higgs mechanism in local gauges is explained in terms of the Gauss law constraint on the physical states. The mathematical details are kept to the minimum required to make the book accessible to students with basic knowledge of Hilbert space structures. Much of the material has not appeared in other textbooks.


Book
Gauge Invariance and Weyl-polymer Quantization
Author:
ISBN: 3319176943 3319176951 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable.  The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2π. Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group. Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states.


Book
A Primer of Analytical Mechanics
Author:
ISBN: 3319737619 3319737600 Year: 2018 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the basic elements of Analytical Mechanics, starting from the physical motivations that favor it with respect to the Newtonian Mechanics in Cartesian coordinates. Rather than presenting Analytical Mechanics mainly as a formal development of Newtonian Mechanics, it highlights its effectiveness due to the following five important achievements: 1) the most economical description of time evolution in terms of the minimal set of coordinates, so that there are no constraint forces in their evolution equations; 2) the form invariance of the evolution equations, which automatically solves the problem of fictitious forces; 3) only one scalar function encodes the formulation of the dynamics, rather than the full set of vectors which describe the forces in Cartesian Newtonian Mechanics; 4) in the Hamiltonian formulation, the corresponding evolution equations are of first order in time and are fully governed by the Hamiltonian function (usually corresponding to the energy); 5) the emergence of the Hamiltonian canonical algebra and its effectiveness in simplifying the control of the dynamical problem (e.g. the constant of motions identified by the Poisson brackets with the Hamiltonian, the relation between symmetries and conservations laws, the use of canonical transformations to reduce the Hamiltonian to a simpler form etc.). The book also addresses a number of points usually not included in textbook presentations of Analytical Mechanics, such as 1) the characterization of the cases in which the Hamiltonian differs from the energy, 2) the characterization of the non-uniqueness of the Lagrangian and of the Hamiltonian and its relation to a “gauge” transformation, 3) the Hamiltonian formulation of the Noether theorem, with the possibility that the constant of motion corresponding to a continuous symmetry of the dynamics is not the canonical generator of the symmetry transformation but also involves the generator of a gauge transformation. In turn, the book’s closing chapter is devoted to explaining the extraordinary analogy between the canonical structure of Classical and Quantum Mechanics. By correcting the Dirac proposal for such an explanation, it demonstrates that there is a common Poisson algebra shared by Classical and Quantum Mechanics, the differences between the two theories being reducible to the value of the central variable of that algebra.


Book
Symmetry Breaking in the Standard Model : A Non-Perturbative Outlook
Author:
ISBN: 8876426604 8876426590 Year: 2019 Publisher: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book provides a non-perturbative approach to the symmetry breaking in the standard model, in this way avoiding the critical issues which affect the standard presentations. The debated empirical meaning of global and local gauge symmetries is clarified. The absence of Goldstone bosons in the Higgs mechanism is non-perturbatively explained by the validity of Gauss laws obeyed by the currents which generate the related global gauge symmetry. The solution of the U(1) problem and the vacuum structure in QCD are obtained without recourse to the problematic semiclassical instanton approximation, by rather exploiting the topology of the gauge group.

An introduction to the mathematical structure of quantum mechanics : a short course for mathematicians
Author:
ISBN: 9812564314 9789812564313 Year: 2005 Publisher: New Jersey: World scientific,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
An introduction to the mathematical structure of quantum mechanics : a short course for mathematicians
Author:
ISBN: 9812835229 9789812835222 Year: 2008 Publisher: New Jersey (N.Y.) : World scientific,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
Symmetry Breaking
Author:
ISBN: 9783540315360 Year: 2005 Publisher: Berlin Heidelberg Springer-Verlag GmbH

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
Symmetry Breaking
Author:
ISBN: 9783540735939 Year: 2008 Publisher: Berlin, Heidelberg Springer-Verlag Berlin Heidelberg

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
A Primer of Analytical Mechanics
Author:
ISBN: 9783319737614 Year: 2018 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the basic elements of Analytical Mechanics, starting from the physical motivations that favor it with respect to the Newtonian Mechanics in Cartesian coordinates. Rather than presenting Analytical Mechanics mainly as a formal development of Newtonian Mechanics, it highlights its effectiveness due to the following five important achievements: 1) the most economical description of time evolution in terms of the minimal set of coordinates, so that there are no constraint forces in their evolution equations; 2) the form invariance of the evolution equations, which automatically solves the problem of fictitious forces; 3) only one scalar function encodes the formulation of the dynamics, rather than the full set of vectors which describe the forces in Cartesian Newtonian Mechanics; 4) in the Hamiltonian formulation, the corresponding evolution equations are of first order in time and are fully governed by the Hamiltonian function (usually corresponding to the energy); 5) the emergence of the Hamiltonian canonical algebra and its effectiveness in simplifying the control of the dynamical problem (e.g. the constant of motions identified by the Poisson brackets with the Hamiltonian, the relation between symmetries and conservations laws, the use of canonical transformations to reduce the Hamiltonian to a simpler form etc.). The book also addresses a number of points usually not included in textbook presentations of Analytical Mechanics, such as 1) the characterization of the cases in which the Hamiltonian differs from the energy, 2) the characterization of the non-uniqueness of the Lagrangian and of the Hamiltonian and its relation to a “gauge” transformation, 3) the Hamiltonian formulation of the Noether theorem, with the possibility that the constant of motion corresponding to a continuous symmetry of the dynamics is not the canonical generator of the symmetry transformation but also involves the generator of a gauge transformation. In turn, the book’s closing chapter is devoted to explaining the extraordinary analogy between the canonical structure of Classical and Quantum Mechanics. By correcting the Dirac proposal for such an explanation, it demonstrates that there is a common Poisson algebra shared by Classical and Quantum Mechanics, the differences between the two theories being reducible to the value of the central variable of that algebra.


Multi
Symmetry Breaking
Author:
ISBN: 9783662621660 9783662621653 9783662621646 Year: 2021 Publisher: Berlin, Heidelberg Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

The third edition of the by now classic reference on rigorous analysis of symmetry breaking in both classical and quantum field theories adds new topics of relevance, in particular the effect of dynamical Coulomb delocalization, by which boundary conditions give rise to volume effects and to energy/mass gap in the Goldstone spectrum (plasmon spectrum, Anderson superconductivity, Higgs phenomenon). The book closes with a discussion of the physical meaning of global and local gauge symmetries and their breaking, with attention to the effect of gauge group topology in QCD. From the reviews of the first edition: It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced [...] a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. J.-P. Antoine, Physicalia 28/2, 2006 Despite many accounts in popular textbooks and a widespread belief, the phenomenon is rather subtle, requires an infinite set of degrees of freedom and an advanced mathematical setting of the system under investigation. [...] The mathematically oriented graduate student will certainly benefit from this thorough, rigorous and detailed investigation. G. Roepstorff, Zentralblatt MATH, Vol. 1075, 2006 From the reviews of the second edition: This second edition of Strocchi's Symmetry Breaking presents a complete, generalized and highly rigorous discussion of the subject, based on a formal analysis of conditions necessary for the mechanism of spontaneous symmetry breaking to occur in classical systems, as well as in quantum systems. [...] This book is specifically recommended for mathematical physicists interested in a deeper and rigorous understanding of the subject, and it should be mandatory for researchers studying the mechanism of spontaneous symmetry breaking. S. Hajjawi, Mathematical Reviews, 2008.

Listing 1 - 10 of 16 << page
of 2
>>
Sort by