Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Choose an application
This reprint presents some recent results from applying original analytical methods to the most renowned hive matrices. Particular consideration was given to methods devoted to the attribution of the origin of honey and propolis, but also studies dealing with the chemical characterization of honey and other hive matrices are here reported. Attention has also been paid to the use of optimized methods of elemental analysis in several hive products for quality and safety purposes, but also for environmental biomonitoring. The treatment of the data was often achieved through multivariate analysis methods, which made it possible to obtain reliable classifications of honeys and propolis according to their botanic or geographical origin.
Research & information: general --- Chemistry --- Analytical chemistry --- propolis --- poplar --- HPLC–Q-Exactive-Orbitrap®–MS analysis --- phenolic glycerides --- essential and non-essential nutrients --- nucleosides --- honey composition --- uridine --- neuropharmacological activities --- filtered honey --- botanical origin --- fluorescence spectrometry --- antioxidant activity --- spectrum–effect relationships --- cluster analysis --- principal component analysis --- multiple linear regression analysis --- sample preparation --- trace element --- toxic element --- spectroanalytical technique --- biomonitoring --- bee pollen --- ascorbic acid --- total ascorbic acids --- dehydroascorbic acid --- HILIC --- honey discrimination --- strawberry-tree --- thistle --- eucalyptus --- asphodel --- attenuated total reflectance --- Fourier transform infrared spectroscopy --- bee products --- multielemental analysis --- ICP-MS --- ICP-OES --- inorganic contaminants --- heavy metals --- honey --- quality standards --- protein --- amylase --- acid phosphatase --- native PAGE --- royal jelly --- proteins --- ProteoMinerTM --- MALDI-TOF-MS --- proteomics --- beehive product --- unedone --- bitter taste --- strawberry tree honey --- LC-ESI/LTQ-Orbitrap-MS --- PCA --- PLS --- aroma composition --- sugar content --- QDA profile --- HMF --- furanic aldehydes --- furanic acids --- homogentisic acid --- cyclic voltammetry --- square wave voltammetry --- RP-HPLC --- bees --- beehive products --- cold vapor atomic fluorescence spectrometry --- toxic metal --- trace elements --- toxic elements --- geographical origin --- strawberry tree
Choose an application
This reprint presents some recent results from applying original analytical methods to the most renowned hive matrices. Particular consideration was given to methods devoted to the attribution of the origin of honey and propolis, but also studies dealing with the chemical characterization of honey and other hive matrices are here reported. Attention has also been paid to the use of optimized methods of elemental analysis in several hive products for quality and safety purposes, but also for environmental biomonitoring. The treatment of the data was often achieved through multivariate analysis methods, which made it possible to obtain reliable classifications of honeys and propolis according to their botanic or geographical origin.
propolis --- poplar --- HPLC–Q-Exactive-Orbitrap®–MS analysis --- phenolic glycerides --- essential and non-essential nutrients --- nucleosides --- honey composition --- uridine --- neuropharmacological activities --- filtered honey --- botanical origin --- fluorescence spectrometry --- antioxidant activity --- spectrum–effect relationships --- cluster analysis --- principal component analysis --- multiple linear regression analysis --- sample preparation --- trace element --- toxic element --- spectroanalytical technique --- biomonitoring --- bee pollen --- ascorbic acid --- total ascorbic acids --- dehydroascorbic acid --- HILIC --- honey discrimination --- strawberry-tree --- thistle --- eucalyptus --- asphodel --- attenuated total reflectance --- Fourier transform infrared spectroscopy --- bee products --- multielemental analysis --- ICP-MS --- ICP-OES --- inorganic contaminants --- heavy metals --- honey --- quality standards --- protein --- amylase --- acid phosphatase --- native PAGE --- royal jelly --- proteins --- ProteoMinerTM --- MALDI-TOF-MS --- proteomics --- beehive product --- unedone --- bitter taste --- strawberry tree honey --- LC-ESI/LTQ-Orbitrap-MS --- PCA --- PLS --- aroma composition --- sugar content --- QDA profile --- HMF --- furanic aldehydes --- furanic acids --- homogentisic acid --- cyclic voltammetry --- square wave voltammetry --- RP-HPLC --- bees --- beehive products --- cold vapor atomic fluorescence spectrometry --- toxic metal --- trace elements --- toxic elements --- geographical origin --- strawberry tree
Choose an application
This reprint presents some recent results from applying original analytical methods to the most renowned hive matrices. Particular consideration was given to methods devoted to the attribution of the origin of honey and propolis, but also studies dealing with the chemical characterization of honey and other hive matrices are here reported. Attention has also been paid to the use of optimized methods of elemental analysis in several hive products for quality and safety purposes, but also for environmental biomonitoring. The treatment of the data was often achieved through multivariate analysis methods, which made it possible to obtain reliable classifications of honeys and propolis according to their botanic or geographical origin.
Research & information: general --- Chemistry --- Analytical chemistry --- propolis --- poplar --- HPLC–Q-Exactive-Orbitrap®–MS analysis --- phenolic glycerides --- essential and non-essential nutrients --- nucleosides --- honey composition --- uridine --- neuropharmacological activities --- filtered honey --- botanical origin --- fluorescence spectrometry --- antioxidant activity --- spectrum–effect relationships --- cluster analysis --- principal component analysis --- multiple linear regression analysis --- sample preparation --- trace element --- toxic element --- spectroanalytical technique --- biomonitoring --- bee pollen --- ascorbic acid --- total ascorbic acids --- dehydroascorbic acid --- HILIC --- honey discrimination --- strawberry-tree --- thistle --- eucalyptus --- asphodel --- attenuated total reflectance --- Fourier transform infrared spectroscopy --- bee products --- multielemental analysis --- ICP-MS --- ICP-OES --- inorganic contaminants --- heavy metals --- honey --- quality standards --- protein --- amylase --- acid phosphatase --- native PAGE --- royal jelly --- proteins --- ProteoMinerTM --- MALDI-TOF-MS --- proteomics --- beehive product --- unedone --- bitter taste --- strawberry tree honey --- LC-ESI/LTQ-Orbitrap-MS --- PCA --- PLS --- aroma composition --- sugar content --- QDA profile --- HMF --- furanic aldehydes --- furanic acids --- homogentisic acid --- cyclic voltammetry --- square wave voltammetry --- RP-HPLC --- bees --- beehive products --- cold vapor atomic fluorescence spectrometry --- toxic metal --- trace elements --- toxic elements --- geographical origin --- strawberry tree
Listing 1 - 4 of 4 |
Sort by
|