Narrow your search
Listing 1 - 6 of 6
Sort by

Book
Solid Waste Management for Resource-Efficient Systems : Circularity in Action
Authors: --- ---
ISBN: 044323776X 0443237751 9780443237768 Year: 2024 Publisher: Amsterdam, Netherlands : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Machine Intelligence and Signal Processing
Authors: --- --- ---
ISBN: 8132226240 8132226259 Year: 2016 Publisher: New Delhi : Springer India : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intelligence and Signal Processing was one of the few unique events that are focused on the convergence of the two fields. The book is comprised of chapters based on the top presentations at the workshop. This book has three chapters on various topics of biometrics – two are on face detection and one on iris recognition; all from top researchers in their field. There are four chapters on different biomedical signal / image processing problems. Two of these are on retinal vessel classification and extraction; one on biomedical signal acquisition and the fourth one on region detection. There are three chapters on data analysis – a topic gaining immense popularity in industry and academia. One of these shows a novel use of compressed sensing in missing sales data interpolation. Another chapter is on spam detection and the third one is on simple one-shot movie rating prediction. Four other chapters cover various cutting edge miscellaneous topics on character recognition, software effort prediction, speech recognition and non-linear sparse recovery. The contents of this book will prove useful to researchers, professionals and students in the domains of machine learning and signal processing.


Book
Domain Adaptation for Visual Understanding
Authors: --- --- ---
ISBN: 3030306712 3030306704 Year: 2020 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition. Topics and features: Reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach Introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning Proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks Describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance Presents a technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation Examines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding. Dr. Richa Singh is a Professor at Indraprastha Institute of Information Technology, Delhi, India. Dr. Mayank Vatsa is a Professor at the same institution. Dr. Vishal M. Patel is an Assistant Professor in the Department of Electrical and Computer Engineering at Johns Hopkins University, Baltimore, MD, USA. Dr. Nalini Ratha is a Research Staff Member at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.


Digital
Machine Intelligence and Signal Processing
Authors: --- --- ---
ISBN: 9788132226253 Year: 2016 Publisher: New Delhi Springer India

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intelligence and Signal Processing was one of the few unique events that are focused on the convergence of the two fields. The book is comprised of chapters based on the top presentations at the workshop. This book has three chapters on various topics of biometrics – two are on face detection and one on iris recognition; all from top researchers in their field. There are four chapters on different biomedical signal / image processing problems. Two of these are on retinal vessel classification and extraction; one on biomedical signal acquisition and the fourth one on region detection. There are three chapters on data analysis – a topic gaining immense popularity in industry and academia. One of these shows a novel use of compressed sensing in missing sales data interpolation. Another chapter is on spam detection and the third one is on simple one-shot movie rating prediction. Four other chapters cover various cutting edge miscellaneous topics on character recognition, software effort prediction, speech recognition and non-linear sparse recovery. The contents of this book will prove useful to researchers, professionals and students in the domains of machine learning and signal processing.


Multi
Domain Adaptation for Visual Understanding
Authors: --- --- --- ---
ISBN: 9783030306717 Year: 2020 Publisher: Cham Springer International Publishing :Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition. Topics and features: Reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach Introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning Proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks Describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance Presents a technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation Examines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding. Dr. Richa Singh is a Professor at Indraprastha Institute of Information Technology, Delhi, India. Dr. Mayank Vatsa is a Professor at the same institution. Dr. Vishal M. Patel is an Assistant Professor in the Department of Electrical and Computer Engineering at Johns Hopkins University, Baltimore, MD, USA. Dr. Nalini Ratha is a Research Staff Member at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.


Book
Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Listing 1 - 6 of 6
Sort by