Listing 1 - 10 of 10 |
Sort by
|
Choose an application
This book presents and discusses recent developments in the broad field of spectroscopy, providing the reader with an updated overview. The main objective is to introduce them to recent innovations and current trends in spectroscopy applied to molecules and materials. The book also brings together experimentalists and theoreticians to highlight the multidimensional aspects of spectroscopy and discuss the latest issues. Accordingly, it provides insights not only into the general goals of spectroscopy, but also into how the various spectroscopic techniques represent a toolbox that can be used to gain a more detailed understanding of molecular systems and complex chemical problems. Besides technical aspects, basic theoretical interpretations of spectroscopic results are also presented. The spectroscopy techniques discussed include UV-visible absorption spectroscopy, Raman spectroscopy, IR absorption spectroscopy, fluorescence spectroscopy, and time-resolved spectroscopy. In turn, basic tools like lasers and theoretical modeling approaches are also presented. Lastly, applications for the characterization of fundamental properties of molecules (environmental aspects, biomolecules, pharmaceutical drugs, hazardous molecules, etc.) and materials (nanomaterials, nuclear chemistry materials, biomaterials, etc.) are discussed. Given its scope, the book offers a valuable resource for researchers from various branches of science, and presents new techniques that can be applied to their specific problems. .
Spectrum analysis --- Spectroscopy. --- Microscopy. --- Mechanics. --- Mechanics, Applied. --- Mechatronics. --- Spectroscopy and Microscopy. --- Spectroscopy/Spectrometry. --- Solid Mechanics. --- Mechanical engineering --- Microelectronics --- Microelectromechanical systems --- Applied mechanics --- Engineering, Mechanical --- Engineering mathematics --- Classical mechanics --- Newtonian mechanics --- Physics --- Dynamics --- Quantum theory --- Analysis, Microscopic --- Light microscopy --- Micrographic analysis --- Microscope and microscopy --- Microscopic analysis --- Optical microscopy --- Optics --- Analysis, Spectrum --- Spectra --- Spectrochemical analysis --- Spectrochemistry --- Spectrometry --- Spectroscopy --- Chemistry, Analytic --- Interferometry --- Radiation --- Wave-motion, Theory of --- Absorption spectra --- Light --- Spectroscope --- Qualitative --- Analytical chemistry
Choose an application
Physical measurements. --- Measurement. --- Spectrum analysis. --- Analysis, Spectrum --- Spectra --- Spectrochemical analysis --- Spectrochemistry --- Spectrometry --- Spectroscopy --- Analytical chemistry --- Interferometry --- Optics --- Radiation --- Wave-motion, Theory of --- Absorption spectra --- Light --- Spectroscope --- Measuring --- Mensuration --- Mathematics --- Technology --- Metrology --- Physical measurements --- Measurements, Physical --- Mathematical physics --- Measurement --- Qualitative
Choose an application
This book highlights recent advances and evolution of various nanomaterials and their potential in diverse research fields. The book covers the synthesis and characterization of various nanomaterials, followed by discussion on desired applications such as clean and green renewable energy, coating, sensors, thermal applications, microelectronics, biomedical applications such as drug carriers, nutrition, biosensors and detection of cancer cells. The chapters in this book not only illustrate the capability of nanomaterials in such novel usages but also reveal their potential drawbacks and the possible ways to overcome the pitfalls. The book covers interdisciplinary research advancement of nanomaterials, beneficial for researchers and professionals working in both science and engineering.
Nanostructured materials. --- Nanomaterials --- Nanometer materials --- Nanophase materials --- Nanostructure controlled materials --- Nanostructure materials --- Ultra-fine microstructure materials --- Microstructure --- Nanotechnology
Choose an application
The book highlights recent developments in the field of spectroscopy by providing the readers with an updated and high-level of overview. The focus of this book is on the introduction to concepts of modern spectroscopic techniques, recent technological innovations in this field, and current examples of applications to molecules and materials relevant for academia and industry. The book will be beneficial to researchers from various branches of science and technology, and is intended to point them to modern techniques, which might be useful for their specific problems. Spectroscopic techniques, that are discussed include, UV-Visible absorption spectroscopy, XPS, Raman spectroscopy, SERS, TERS, CARS, IR absorption spectroscopy, SFG, LIBS, Quantum cascade laser (QCL) spectroscopy, fluorescence spectroscopy, ellipsometry, cavity-enhanced absorption spectroscopy, such as cavity ring-down spectroscopy (CRDS) and evanescent wave-CRDS both in gas and condensed phases, time-resolved spectroscopy etc. Applications introduced in the different chapters demonstrates the usefulness of the spectroscopic techniques for the characterization of fundamental properties of molecules, e.g. in connection with environmental impact, bio-activity, or usefulness for pharmaceutical drugs, and materials important e.g. for nano-science, nuclear chemistry, or bio-applications. The book presents how spectroscopic techniques can help to better understand substances, which have also great impact on questions of social and economic relevance (environment, alternative energy, etc.).
Measuring methods in physics --- Optics. Quantum optics --- Chemical structure --- Theoretical spectroscopy. Spectroscopic techniques --- Chemistry --- Chemical technology --- meetmethoden --- moleculen --- nanotechniek --- chemie --- meettechniek --- spectroscopie --- atomen --- optica
Choose an application
This book highlights recent advances and evolution of various nanomaterials and their potential in diverse research fields. The book covers the synthesis and characterization of various nanomaterials, followed by discussion on desired applications such as clean and green renewable energy, coating, sensors, thermal applications, microelectronics, biomedical applications such as drug carriers, nutrition, biosensors and detection of cancer cells. The chapters in this book not only illustrate the capability of nanomaterials in such novel usages but also reveal their potential drawbacks and the possible ways to overcome the pitfalls. The book covers interdisciplinary research advancement of nanomaterials, beneficial for researchers and professionals working in both science and engineering.
Chemical structure --- Chemistry --- Materials sciences --- Electrical engineering --- Environmental protection. Environmental technology --- Biotechnology --- moleculen --- materiaalproductie --- nanotechniek --- chemie --- biotechnologie --- ecologie --- atomen
Choose an application
Measuring methods in physics --- Optics. Quantum optics --- Chemical structure --- Theoretical spectroscopy. Spectroscopic techniques --- Chemistry --- Chemical technology --- meetmethoden --- moleculen --- nanotechniek --- chemie --- meettechniek --- spectroscopie --- atomen --- optica
Choose an application
Choose an application
Choose an application
This book highlights recent advances of spectroscopic techniques based on Raman scattering. Different applications are introduced that serve as examples for the versatile use of Raman techniques. Raman spectroscopy is a marker free technique, which is capable of yielding detailed information about molecular systems in a non-destructive way. This makes it a valuable tool for, e.g., material science or medical research. The access to vibrational energy and dynamics yields fundamental insights into static and dynamical structural properties of molecules being influenced by and influencing their material science or medical research environment. The better understanding of the basic building blocks of materials helps to improve the functionality in various applications. Raman spectroscopy has become a truly interdisciplinary research tool, and the ongoing development of techniques makes it attractive for growing variety of scientific and industrial applications, which will be demonstrated in the book. While the “classical” linear spontaneous Raman spectroscopy is restricted in its applicability due to low signal intensities or the excitation of strong fluorescence background, new techniques have helped to overcome such problems. Examples, presented in the book, are surface-enhanced Raman scattering (SERS), and various associated techniques are used to drastically increase signal intensity, confocal, and tip-enhanced Raman scattering (TERS) allowing for high and even sub-diffraction limited spatial resolutions, coherent anti-Stokes Raman scattering (CARS) avoiding fluorescence background and allowing for time-resolved observations of vibrational dynamics, or hyper- and resonance Raman scattering influencing the scattering based on electronic resonances, etc.
Raman spectroscopy. --- Optics. --- Spectrum analysis. --- Optical spectroscopy. --- Molecular spectroscopy. --- Applied Optics. --- Spectroscopy. --- Optical Spectroscopy. --- Molecular Spectroscopy.
Choose an application
Listing 1 - 10 of 10 |
Sort by
|