Narrow your search

Library

KU Leuven (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

UGent (4)

ULB (4)

ULiège (4)

VIVES (4)

FARO (3)

More...

Resource type

book (11)

digital (1)


Language

English (12)


Year
From To Submit

2023 (1)

2022 (4)

2021 (4)

2019 (3)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Selective Laser Melting of Novel Titanium-Tantalum Alloy as Orthopaedic Biomaterial
Author:
ISBN: 9811327246 9811327238 Year: 2019 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book investigates the microstructural and mechanical properties of titanium-tantalum (TiTa) alloy formed using selective laser melting (SLM). TiTa has potential orthopaedic biomedical applications thanks to its high strength to modulus ratio. However, because it is difficult to obtain, it is still not widely used. The book describes how SLM is utilized to form this alloy, and provides a better understanding of the SLM process in porous lattice structure fabrication and its control through statistical modelling.


Book
Process–Structure–Properties in Polymer Additive Manufacturing
Author:
ISBN: 303651371X 3036513728 Year: 2021 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Process–Structure–Properties in Polymer Additive Manufacturing II
Author:
ISBN: 3036544836 3036544844 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Digital
Selective Laser Melting of Novel Titanium-Tantalum Alloy as Orthopaedic Biomaterial
Author:
ISBN: 9789811327247 Year: 2019 Publisher: Singapore Springer Singapore, Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book investigates the microstructural and mechanical properties of titanium-tantalum (TiTa) alloy formed using selective laser melting (SLM). TiTa has potential orthopaedic biomedical applications thanks to its high strength to modulus ratio. However, because it is difficult to obtain, it is still not widely used. The book describes how SLM is utilized to form this alloy, and provides a better understanding of the SLM process in porous lattice structure fabrication and its control through statistical modelling.


Book
Selective Laser Melting of Novel Titanium-Tantalum Alloy as Orthopaedic Biomaterial
Authors: ---
ISBN: 9789811327247 Year: 2019 Publisher: Singapore Springer Singapore :Imprint: Springer


Book
Emerging Materials for Additive Manufacturing
Authors: ---
ISBN: 3036566430 3036566422 Year: 2023 Publisher: Basel : MDPI,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this reprint, state-of-the-art research and review articles on emerging material systems for additive manufacturing (AM) are collected, with a focus on the process-structure-properties relationships. Additive manufacturing (AM) has grown and evolved rapidly in recent years. There are many exciting research and translational works in many areas of application, such as biomedical, aerospace and electronics. These advancements are typically coupled with materials development, which has resulted in more functionalities added to 3D-printed parts, such as multi-material fabrications and integration with machine learning or digital twins. Such enhancements in functionalities have enabled the evolution of AM from a rapid prototyping tool to an actual manufacturing solution. In this reprint, two reviews and thirteen original research articles are included to highlight the latest development in the field of materials science for AM.


Book
Process-Structure-Properties in Polymer Additive Manufacturing
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.


Book
Process-Structure-Properties in Polymer Additive Manufacturing II
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is particularly exciting and has great potential in transformative and translational research in many fields, such as biomedicine, aerospace, and even electronics. The current methods for polymer AM include material extrusion, material jetting, vat polymerization, and powder bed fusion. In this Special Issue, state-of-the-art reviews and current research results, which focus on the process–structure–properties relationships in polymer additive manufacturing, are reported. These include, but are not limited to, assessing the effect of process parameters, post-processing, and characterization techniques.


Book
Process-Structure-Properties in Polymer Additive Manufacturing
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.


Book
Process-Structure-Properties in Polymer Additive Manufacturing II
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is particularly exciting and has great potential in transformative and translational research in many fields, such as biomedicine, aerospace, and even electronics. The current methods for polymer AM include material extrusion, material jetting, vat polymerization, and powder bed fusion. In this Special Issue, state-of-the-art reviews and current research results, which focus on the process–structure–properties relationships in polymer additive manufacturing, are reported. These include, but are not limited to, assessing the effect of process parameters, post-processing, and characterization techniques.

Listing 1 - 10 of 12 << page
of 2
>>
Sort by