Listing 1 - 8 of 8 |
Sort by
|
Choose an application
The book is a reproduction of a course of lectures delivered by the author in 1983-84 which appeared in the Brandeis Lecture Notes series. The aim of this course was to give an introduction to the series of papers by concentrating on the case of the full linear group. In recent years, there has been great progress in standard monomial theory due to the work of Peter Littelmann. The author’s lectures (reproduced in this book) remain an excellent introduction to standard monomial theory. d-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">Standard monomial theory deals with the construction of nice bases of finite dimensional irreducible representations of semi-simple algebraic groups or, in geometric terms, nice bases of coordinate rings of flag varieties (and their Schubert subvarieties) associated with these groups. Besides its intrinsic interest, standard monomial theory has applications to the study of the geometry of Schubert varieties. Standard monomial theory has its origin in the work of Hodge, giving bases of the coordinate rings of the Grassmannian and its Schubert subvarieties by “standard monomials”. In its modern form, standard monomial theory was developed by the author in a series of papers written in collaboration with V. Lakshmibai and C. Musili. In the second edition of the book, conjectures of a standard monomial theory for a general semi-simple (simply-connected) algebraic group, due to Lakshmibai, have been added as an appendix, and the bibliography has been revised.
Mathematics. --- Algebraic geometry. --- Algebra. --- Field theory (Physics). --- Algebraic Geometry. --- Field Theory and Polynomials. --- Classical field theory --- Continuum physics --- Algebraic geometry --- Math --- Geometry, algebraic. --- Physics --- Continuum mechanics --- Geometry --- Polynomials. --- Mathematics --- Mathematical analysis
Choose an application
This volume is the outcome of a seminar on the history of mathematics held at the Chennai Mathematical Institute during January-February 2008 and contains articles based on the talks of distinguished scholars both from the West and from India. The topics covered include: (1) geometry in the oulvasatras; (2) the origins of zero (which can be traced to ideas of lopa in Paoini's grammar); (3) combinatorial methods in Indian music (which were developed in the context of prosody and subsequently applied to the study of tonal and rhythmic patterns in music); (4) a cross-cultural view of the development of negative numbers (from Brahmagupta (c. 628 CE) to John Wallis (1685 CE); (5) Kunnaka, Bhavana and Cakravala (the techniques developed by Indian mathematicians for the solution of indeterminate equations); (6) the development of calculus in India (covering the millennium-long history of discoveries culminating in the work of the Kerala school giving a complete analysis of the basic calculus of polynomial and trigonometrical functions); (7) recursive methods in Indian mathematics (going back to Paoini's grammar and culminating in the recursive proofs found in the Malayalam text Yuktibhaua (1530 CE)); and (8) planetary and lunar models developed by the Kerala School of Astronomy. The articles in this volume cover a substantial portion of the history of Indian mathematics and astronomy. This book will serve the dual purpose of bringing to the international community a better perspective of the mathematical heritage of India and conveying the message that much work remains to be done, namely the study of many unexplored manuscripts still available in libraries in India and abroad.
Mathematics. --- Mathematics, general. --- Mathematics --- HIstory. --- Math --- Science
Choose an application
Choose an application
The book is a reproduction of a course of lectures delivered by the author in 1983-84 which appeared in the Brandeis Lecture Notes series. The aim of this course was to give an introduction to the series of papers by concentrating on the case of the full linear group. In recent years, there has been great progress in standard monomial theory due to the work of Peter Littelmann. The author’s lectures (reproduced in this book) remain an excellent introduction to standard monomial theory. d-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">Standard monomial theory deals with the construction of nice bases of finite dimensional irreducible representations of semi-simple algebraic groups or, in geometric terms, nice bases of coordinate rings of flag varieties (and their Schubert subvarieties) associated with these groups. Besides its intrinsic interest, standard monomial theory has applications to the study of the geometry of Schubert varieties. Standard monomial theory has its origin in the work of Hodge, giving bases of the coordinate rings of the Grassmannian and its Schubert subvarieties by “standard monomials”. In its modern form, standard monomial theory was developed by the author in a series of papers written in collaboration with V. Lakshmibai and C. Musili. In the second edition of the book, conjectures of a standard monomial theory for a general semi-simple (simply-connected) algebraic group, due to Lakshmibai, have been added as an appendix, and the bibliography has been revised.
Algebra --- Geometry --- Mathematics --- Classical mechanics. Field theory --- algebra --- landmeetkunde --- wiskunde --- fysica --- mechanica
Choose an application
This volume is the outcome of a seminar on the history of mathematics held at the Chennai Mathematical Institute during January-February 2008 and contains articles based on the talks of distinguished scholars both from the West and from India. The topics covered include: (1) geometry in the oulvasatras; (2) the origins of zero (which can be traced to ideas of lopa in Paoini's grammar); (3) combinatorial methods in Indian music (which were developed in the context of prosody and subsequently applied to the study of tonal and rhythmic patterns in music); (4) a cross-cultural view of the development of negative numbers (from Brahmagupta (c. 628 CE) to John Wallis (1685 CE); (5) Kunnaka, Bhavana and Cakravala (the techniques developed by Indian mathematicians for the solution of indeterminate equations); (6) the development of calculus in India (covering the millennium-long history of discoveries culminating in the work of the Kerala school giving a complete analysis of the basic calculus of polynomial and trigonometrical functions); (7) recursive methods in Indian mathematics (going back to Paoini's grammar and culminating in the recursive proofs found in the Malayalam text Yuktibhaua (1530 CE)); and (8) planetary and lunar models developed by the Kerala School of Astronomy. The articles in this volume cover a substantial portion of the history of Indian mathematics and astronomy. This book will serve the dual purpose of bringing to the international community a better perspective of the mathematical heritage of India and conveying the message that much work remains to be done, namely the study of many unexplored manuscripts still available in libraries in India and abroad.
Mathematics --- wiskunde
Choose an application
Choose an application
Choose an application
Listing 1 - 8 of 8 |
Sort by
|