Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Choose an application
Choose an application
When two physical systems (e.g. a robot and its environment) interact they exchange energy through localized ports and, in order to control their interaction, it is necessary to control the exchanged energy. The port-Hamiltonian formalism provides a general framework for modeling physical systems based on the concepts of energy, interconnection and power ports which describe the phenomena of energy storage, energy exchange and external interaction respectively. This monograph deals with energy based control of interactive robotic interfaces and the port-Hamiltonian framework is exploited both for modeling and controlling interactive robotic interfaces. Using the port-Hamiltonian framework, it is possible to identify the energetic properties that have to be controlled in order to achieve a desired interactive behavior and it is possible to build a port-Hamiltonian controller that properly regulates the robotic interface by shaping its energetic properties. Thanks to its generality, the port-Hamiltonian formalism allows to model and control also complex interactive robotic interfaces in a very natural way. In this book, a port-Hamiltonian approach for regulating the interaction between a robot and a local environment, a virtual environment (i.e. haptic interfaces) and a remote environment (i.e. bilateral telemanipulation systems) is developed.
Robots --- Tactile sensors. --- Control systems. --- Systèmes de commande --- Electronic books. -- local. --- Robots -- Control systems. --- Automatic control --- Tactile sensors --- Mechanical Engineering - General --- Mechanical Engineering --- Engineering & Applied Sciences --- Control systems --- Mathematical models --- Information Technology --- Artificial Intelligence --- Force sensors --- Touch sensors --- Robot control --- Engineering. --- Artificial intelligence. --- System theory. --- Control engineering. --- Robotics. --- Mechatronics. --- Control, Robotics, Mechatronics. --- Artificial Intelligence (incl. Robotics). --- Systems Theory, Control. --- Mechanical engineering --- Microelectronics --- Microelectromechanical systems --- Automation --- Machine theory --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Programmable controllers --- Systems, Theory of --- Systems science --- Science --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Construction --- Industrial arts --- Technology --- Philosophy --- Detectors --- Robotics --- Systems theory. --- Artificial Intelligence. --- Mathematical models. --- Automation. --- Control theory. --- Control, Robotics, Automation. --- Systems Theory, Control . --- Dynamics --- Automatic factories --- Automatic production --- Computer control --- Engineering cybernetics --- Factories --- Industrial engineering --- Mechanization --- Assembly-line methods --- Automatic machinery --- CAD/CAM systems --- Automatic control.
Choose an application
Choose an application
When two physical systems (e.g. a robot and its environment) interact they exchange energy through localized ports and, in order to control their interaction, it is necessary to control the exchanged energy. The port-Hamiltonian formalism provides a general framework for modeling physical systems based on the concepts of energy, interconnection and power ports which describe the phenomena of energy storage, energy exchange and external interaction respectively. This monograph deals with energy based control of interactive robotic interfaces and the port-Hamiltonian framework is exploited both for modeling and controlling interactive robotic interfaces. Using the port-Hamiltonian framework, it is possible to identify the energetic properties that have to be controlled in order to achieve a desired interactive behavior and it is possible to build a port-Hamiltonian controller that properly regulates the robotic interface by shaping its energetic properties. Thanks to its generality, the port-Hamiltonian formalism allows to model and control also complex interactive robotic interfaces in a very natural way. In this book, a port-Hamiltonian approach for regulating the interaction between a robot and a local environment, a virtual environment (i.e. haptic interfaces) and a remote environment (i.e. bilateral telemanipulation systems) is developed.
Applied physical engineering --- Artificial intelligence. Robotics. Simulation. Graphics --- procesautomatisering --- automatisering --- systeemtheorie --- KI (kunstmatige intelligentie) --- systeembeheer --- robots --- regeltechniek
Listing 1 - 5 of 5 |
Sort by
|