Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Current farming practices in Flanders, Belgium use large amounts of inorganic fertilizers to attain high yield and quality. Especially in open field vegetable production the amount of applied nitrogen fertilizer exceeds the crop demand all too often. This practice in addition to the mineralization of soil organic matter and the use of organic fertilizer results in nitrate concentrations in ground and surface water that are frequently above the thresholds set by the European Union. In order to understand the impact of these legislative norms for farmers and in search of solutions for the growers, this work proposes a crop-soil-climate interaction model that enables studying the impact and interaction of weather variability and different nitrogen fertilization schemes on yield and environment for open field cauliflower and leek production systems.Data gathered over a period of 3 years in a specifically designed field experiment resulted into the development of two crop growth modules able to simulate the day-to-day biomass accumulation of a cauliflower and leek crop. A transport model for soil water and solutes that simulates soil nitrogen and carbon dynamics was adapted to the specific root distribution characteristics of these horticultural crops and adjusted to take into account common fertilizer practices of the production system at hand. Calibration results of the model parameters are presented and historical weather data was used to assess the variable impact of past weather conditions on a continuous annual cauliflower-leek production scheme. Besides the effect on crop production, the model was also able to calculate the year-to-year effect on the soil water and nitrogen balance.Subsequently, different fertilizer application scenarios were developed and used to determine the production cycle outcomes in terms of biomass production success in combination with soil nutrient losses and potential environmental impact. Broadcast, row applied and fertigation applications at different fertilizer rates were analysed in search of management solutions that assure adequate production levels without jeopardizing the surroundings. An assessment was made that determined the residual soil nitrate content by the end of the production cycle in order to evaluate the feasibility of these fertilizer strategies of compliance with the obligatory maximum threshold value of 90 kg N/ha (residual nitrate) as enforced by the government.The different fertilizer scenario simulations gave a clear indication of production limits and the model allowed the estimation of plausible production outcomes under variable weather. These outcomes were used to generate on-the-go information for pre-season decision support and in-season managerial recommendations, and included a real-time estimation of the likeliness of not complying with the environmental threshold under present weather conditions. Finally, the presented model allowed determining optimal fertilizer strategies and defining best-bet solutions to the growers depending on the production priorities.
Choose an application
Several approaches and methodologies have been proposed in the literature to address the technical aspects of resource optimization and the improvement of management practices in agricultural systems. Similarly, field experimentation has benefited from multispectral imagery, obtained by unmanned aerial vehicles (UAVs), which allow to obtain crop data with cost-efficient nondestructive measurements. The overall objective of this PhD thesis was to develop and extend generic and multi-target quantitative methods to study the technical sustainability of agricultural systems (at the system level), and the statistical modeling of UAV-multispectral imagery (at field level) leading to the optimization of open-field agricultural experiments. This PhD applies the developed methodologies to different study cases.The system analysis sections examine the potential environmental impacts and the most relevant biophysical factors explaining the yield gap and yield variability for potato cropping systems in the Central Peruvian Andes. The methods used were life cycle assessment, multivariate statistics, data envelopment analysis and crop simulation modelling. Taking into account the variability in potato production strategies, important environmental impact values were found for acidification and eutrophication (per ton of potato fresh weight), caused by the inappropriate or sub-optimal use of fertilizer sources. The k-means clustering algorithm identified three groups mainly defined by the nature of the inputs used for fertilization: inorganic, organic and mixed oriented. Exploratory factor analysis demonstrated that the first and second latent variables were correlated with an inorganic- and organic-oriented agriculture respectively; the inorganic system was associated with high values of potential environmental impacts. Relative environmental efficiency was linked to the quantity and source of the inputs, showing that potential environmental savings can be reached if more balanced input sources (mix of organic and inorganic) are employed. Similarly, the average potato yield gap was 42.1%, showing there is an important difference that needs to be reduced. The heterogeneous crop management practices of smallholders resulted in high variability in the dry weight production (710 to 18885 kg ha-1). The classification tree identified that inorganic N is the main factor characterizing the yield gap. The methodology identified that large yield gaps (Fourth quantile) are described by low inorganic N and scarce human labour energy, while small yield gap (First quantile) were mainly described by high N-inputs (inorganic and organic). This classification will be helpful to target inputs and site-specific agronomic recommendations towards closing the potato yield gaps.The field analysis sections examine the feasibility of nonlinear mixed models to analyze UAV-multispectral canopy vegetation index from cassava (without treatment effect) and tomato (with irrigation treatment effect) experiments. Diverse methods were adapted for this purpose: segmentation algorithms (simple linear iterative clustering), affinity propagation, mixed modelling and resampling techniques. Object-based image analysis based on oversegmented multispectral imagery represented a good approach to extract canopy information of individual plants (experimental unit). A three-parameter logistic growth curve (non-linear mixed model) was found to be well-suited to fit the cassava and tomato canopy curves of the normalized difference vegetation index (NDVI). Resampling analysis showed that a suitable accuracy in parameter estimation can be achieved with fewer experimental units which could result in smaller agricultural experimental designs (cassava experiment). Similarly, differences were observed from 100% of the actual evapotranspiration (ETc) for all the treatments (75, 125 and 150% ETc) at maturity stage, when the cumulative effect of the water doses was well-defined and reached its asymptote for the tomato experiment. The diagnosis plots and the root mean squared error of the observed and fitted NDVI indicated the suitability of using the three-parameter logistic mixed model.This PhD research contributed to enhancing and extending the agricultural systems approaches towards technical sustainability. Likewise, it was also demonstrated that UAV-multispectral imagery, analyzed by nonlinear mixed models, provided useful insights towards field experiment optimization and treatment effect studies at field level.
Choose an application
Duurzaamheid wordt tegenwoordig beschouwd als één van de hoofdonderwerpen in het onderzoek omtrent landbouw-productie-systemen. Verscheidene benaderingen en methodologieën werden ontwikkeld rondom de drie algemeen aanvaardde pijlers van duurzaamheid (d.i. economische, sociale en duurzaamheid van de natuurlijke omgeving). In dit werk wordt de duurzaamheid van landbouwsystemen geanalyseerd met behulp van de introductie van het concept ‘technische duurzaamheid’. Dit wordt gedefinieerd als zijnde de mogelijkheid van een biologisch productiesysteem tot het efficiente gebruik van beschikbare bronnen met het oog op een maximalisatie van diens economische output binnenin een set van oncontroleerbare biofysische beperkingen. Efficiëntie in deze definitie impliceert eveneens de omgevingsdimensie van duurzaamheid, aangezien het overdadige gebruik of misbruik van de bronnen zoveel mogelijk dient vermeden te worden. Op dezelfde manier houdt een efficiënt gebruik van de middelen nodig voor een landbouwkundig proces, in rekening te houden met de noden van toekomstige teeltseizoenen. Deze thesis benadrukt het feit dat een maximale algemene duurzaamheid van een landbouwsysteem alleen kan gerealiseerd worden als de technische duurzaamheid en bijhorende technische efficiëntie op veldniveau optimaal gecontroleerd worden. De algemene doelstelling van dit werk bestaat erin het ontwerpen van een generische methodologie om de technische duurzaamheid van kleine tropische productiesystemen op veldniveau te analyseren. Omwille van de inherente variabiliteit van een landbouwkundig productieproces werd een onzekerheidanalyse uitgevoerd op de verzamelde data, wat eveneens één van de hoekstenen vormt van dit schrijven. Als voorbeeld voor de in dit werk geëvalueerde methoden werd gebruik gemaakt van data, die verzameld werd van 2005 tot 2009 bij drie verschillende landbouwsystemen, gelegen in het berggebied van Colombia en de Peruviaanse Andes. De geanalyseerde productiesystemen bestonden in Colombia uit de tuinbouwzone rond Bogota en tomatenteelt in serres, terwijl in Peru de landbouwzone van de Mantarovallei bestudeerd werd. De landbouwers van deze productiesystemen worden vooral gekarakteriseerd als kleine producenten met veel verworven kennis, door jarenlange ervaring, maar met beperkte toegang tot technische informatie of advies. Wekelijks of tweewekelijks werd data over de biofysische gewaskarakteristieken verzamelt, zonder enige rol te spelen in het beslissingsproces van de telers wat betreft gewasmanagement. Bij elk bezoek werden de telers bevraagd naar de toegepaste teeltpraktijken sinds het vorige bezoek. In tegenstelling tot gelijkaardige onderzoeken, werd kwaliteit van data verkozen boven kwantiteit, zodoende een zo hoog mogelijke graad van accuraatheid te behouden. Drie belangrijke methodecategorieën, nl. multivariate exploratieve data analyse, voorspellende statistische modellen en systeemanalyse, werden geëvalueerd als instrument voor het bepalen van de technische efficiëntie van een productiesysteem. In de groep van multivariate exploratieve analyse werden principiële component analyse, canonieke correlatie analyse en canonieke discriminantanalyse geselecteerd. Met behulp van deze strategieën werd het mogelijk efficiëntiegradiënten in de gegevens vast te stellen en deze studie dient tezelfdertijd als voorbeeld voor de mogelijkheden van zulke analyses, in het geval van correcte standaardisatie van de ruwe data. De grafische biplots die met de resultaten van de analyse konden worden opgesteld, vertegenwoordigen een extra krachtig hulpmiddel voor het interpreteren van de uitkomst van de analyse. In het deel van de voorspellende statistische modelling van vaste parameters meegerekend maar ook de willekeurige effecten gebaseerd op de structuur van de data. Deze modellen gaven een betere ‘fit’ vergeleken met het traditionele vaste parameters model en bij verkenning van de datastructuur werd er met dit soort model een beter begrijpbaar overzicht van de bestudeerde populatie bereikt. De onzekerheidanalyse bij de modellen, gekalibreerd voor relatieve bodembedekking van aardappelplanten in de Mantarovallei en voor de opbrengst in de serretomatenteelt, werd uitgevoerd met als doel betrouwbaarheidsregio’s te bepalen voor de voorspellingen gedaan door deze modellen. Met behulp van gemengde modellen werd eveneens de informatie van experimentele metingen in tomatenserres, waarbij de gegevens van potentiële productie gesimuleerd werd, geïntegreerd, met als objectief het verschil tussen de geobserveerde systemen en diens optimale potentiële productie te kwantificeren. De simulaties werden uitgevoerd met het Tomgro v.2.0 tomaat gewas- en ontwikkelingsmodel, gekalibreerd naar de lokale condities. Voor de integratie werd gebruik gemaakt van non-lineaire gemengde modellen. De volgende twee methodes, energieverbruik- en levenscyclusanalyse, werden beoordeeld in het deel systeemanalyse. De beoordelingsmethode voor energieverbruik, toegepast op de tuinbouwzone rond Bogota, had het voordeel dat alle inputs en outputs tot één unieke energetische eenheid konden herleid worden. Hierdoor werd de vergelijking van de resultaten vergemakkelijkt en de berekening van de relatieve indexen tot de efficiëntie van de energie bevat in elk van de componenten van het productiesysteem vereenvoudigd. Een traditionele Monte Carlo simulatie werd afzonderlijk uitgevoerd op de invoerdata en op de transformatiefactors met doel als de foutpropagatie op de uitkomst van de analyse te determineren. De resultaten van de onzekerheidsanalyse duidden aan dat speciale aandacht dient gegeven te worden aan de selectie van energie-equivalenten voor die inputs met het hoogste aandeel in het energieverbruikprofiel. Levenscyclusanalyse is een van de instrumenten bij uitstek voor de kwantificatie van omgevingslasten, veroorzaakt door het fabricageproces van een goed of dienst. De goede documentatie en de algemene toepassing van deze methodologie over de hele wereld, ook in de landbouwsector, maakt het gebruik van zulk een methode, als deel van een totale duurzaamheidsanalyse gemakkelijker. Desalniettemin, de variatie in de tijd en geografische variatie van het landbouwkundig productieproces, d.i. inherente variatie omwille van veranderende biofysische condities, maakt het noodzakelijk de onderliggende data, gebruikt om de verschillende omgevingsimpactcategorieën onder lokale voorwaarden te bepalen, te bestuderen en te kalibreren, vooral voor gebieden bestudeerd in dit werk. De onzekerheidanalyse in deze methode concentreert zich op het bestuderen van het effect van de aanwezigheid van correlatie tussen de input productiefactoren, inclusief opbrengst. Wanneer er correlatie aanwezig is, blijk dat de onzekerheid op het resultaat voor sommige impactcategorieën gereduceerd wordt, terwijl deze factor bij andere geen invloed heeft op het eindresultaat. De technische efficiëntie van de beschreven landbouwsystemen blijft laag, omwille van incorrect gebruik van overvloedige bronnen in enkele gevallen, terwijl bij andere de reden vooral ligt bij het gebrek aan informatie en/of de beschikbaarheid van externe inputs om toe te laten de huidige opbrengstniveaus op te krikken. De analyse van de variabiliteit van de bestudeerde systemen toont aan dat een verbetering van huidige productiesyste, onder de nu heersende voorwaarden en aanwezige middelen, mogelijk is. Er is meer controle van de biofysische omgeving van het productieproces nodig, maar dit wordt alleen haalbaar als informatie op een optimale manier naar de telers wordt overgebracht, zodanig ze hiermee hun beslissingsmakingsproces kunnen verrijken.
Choose an application
Accordingly with world's movement towards sustainable development, agriculture faces mounting pressure to reduce its environmental impact. The present organisation of our food production leads to significant alterations of the global nitrogen cycle causing increased nitrogen emissions into the ecosystem. Aiming at sustainable systems requires to account for long-term implications of practices and the broad interactions and dynamics of agricultural processes. A key goal hereby is to pursue technical sustainability through understanding agriculture from a biophysical perspective in terms of water and nutrient dynamics, and interactions among plant and soil under changing climate conditions and different management strategies. The present work provides an integrated dynamic and process based crop-soil model which is coupled to a life cycle assessment (LCA) to evaluate the technical sustainability of a biological production system. The model simulates crop growth and development as well as soil water and nitrogen dynamics under varying climate conditions and different nitrogen fertilizer application rates. With this dynamic approach to predict the related field nitrogen emissions, a more reliable and realistic assessment of the environmental impact can be obtained to enhance the by default static LCA output. This allowed the assessment of implications of future management scenarios considering potential impact reduction strategies. More specifically, the open field production of a cauliflower leek rotation in Flanders, Belgium was chosen as case study throughout the whole research. It is a commonly applied rotation cycle susceptible for excessive use of inorganic fertilizers.A life cycle assessment, a widely recognized method within the sustainability assessment, quantifies the environmental impact of a system in terms of impact categories like global warming, eutrophication, toxicity, etc. An LCA provides a comprehensive and objective method of analysis that identifies the environmentally most dominant stage(s) in a product life cycle and allows the comparison of alternative production (sub)systems regarding their environmental burden. A preliminary LCA with commonly used empirical models to estimate the field emissions, showed that increased fertilizer application does not result in a sufficient increase in yield to justify additional emissions and to be environmentally favourable. Application of a lower N dose would benefit the environment, but entails a lower commercial yield. It would be a matter of finding the trade-off between yield and potential environmental costs, as the land occupation favours the higher N doses. Although, the latter is not necessarily true in terms of only the edible part of the crop compared to the commercial yield of the whole crop as functional unit. In any case, besides potential renewable energy sources, efforts should be made to reduce emissions of nitrogen pollutants as they are a major source for climate change, acidification and eutrophication. The empirical approach for their calculation however, is very limited to account for the potential effect of mitigation strategies due to the aggregated estimation level and the lack of predicting their implications on crop growth and soil conditions. As natural variability due to varying biophysical conditions is inherent in agricultural production, future climate and soil conditions could alter the whole nitrogen flow through the crop-soil-air environment and shift the most favourable fertilizer management. Although LCA is praised for its holistic approach, it has an inherent static and linear nature and heavily depends on the quality of input data.Therefore, driven by meteorological data, soil properties and agricultural management, a crop-soil- climate interaction model was developed which simulates at field scale on a daily basis the soil temperature, crop growth and development, water flow and soil carbon and nitrogen dynamics including emissions of environmental pollutants to the air and ground water. If the soil supply of water and/or nitrogen does not meet the demand of the crop, a deficiency factor is implemented to limit crop growth and actual water and nitrogen uptake. According to the visual match and associated statistical performance indicators, model predictions were fair to very good as well for the calibration as for the validation with three years of observations and different N dose rates. Given the large variability and strict performance rating thresholds, biomass growth, its nitrogen content, the water content and temperature in the different soil layers predicted the observations very well. The soil nitrogen content simulation however suffered from the discrete limited sampling numbers, the lack of detailed knowledge and the complex interaction of different pathways that affect the content simultaneously. Along with the calibration, a local sensitivity analysis of the model responses to changes in model parameters was performed based on the ratio of their coefficients of variation. Certain soil processes, especially runoff, water percolation and nitrogen leaching and the emission of nitrous oxides were found to be sensitive to a 10% change of mainly the runoff curve number for average moisture content and the water content at field capacity of the top layer.Next, the LCA results were compared with nitrogen field emissions estimated by either the default empirical approach or by the developed dynamic model. Overall, the model based LCA showed a consistently lower impact than the default LCA results of the same crop rotation cycle and fertilizer management. The only exception was the eutrophication potential under the higher N dose application rates for all three years. Differences between the impacts according to both approaches tend to increase with increasing N dose rate besides the impact itself. Changes of impact over the different years were reflected similarly by both outcomes. However, as the empirical approach might look straightforward regarding alternative solutions, they are limited and potentially ineffective. If the LCA needs to support future management decisions, an appropriate choice of approach for estimating field nitrogen emissions is required as it might shift the environmental favourable option to alternative and substantiated solutions, especially considering the timing of reduction strategy implementation. A daily time step and accounting for multiple processes and disturbing factors allows the model based simulation to provide more accurate and efficient adaptations towards sustainable systems. Furthermore, the implications of management adjustments or extreme climate changes on crop yield and nitrogen dynamics cannot be addressed by the default LCA method as the empirical approach depends on standard crop N uptake curves and does not account for precipitation and soil moisture effects for instance. In a dynamic system like the water and nitrogen flow in a crop-soil environment, impact assessment should address 'when' even more than 'which' potential reduction strategies should be implemented.Finally, the model based LCA was implemented for a scenario analysis that included potential reduction strategies regarding fractionated fertilizer application and plastic mulching during winter fallow periods. Whereas a fertilizer application distributed in time to meet the crop demand might reduce N stress and increase yield, the winter soil cover could prevent drain and subsequent nitrogen leaching. Although this was to a certain extent reflected in the outcome of the model simulations, the mitigated environmental impact was cancelled by the burden from additional fertilizer equipment and energy use and/or especially from the plastic cover production and disposal. Only the eutrophication potential would be reduced if the strategy would be implemented. It shows that future decisions require a holistic perspective that combines dynamic model predictions and aggregated LCA results, which still would imply a trade-off between different impacts, but would prevent a problem shift. Such scenario analysis is considered less reliable and could be more misleading with the empirical approach as applied in default LCA studies regarding dynamic agricultural systems.The current implementation of the model based life cycle assessment showed the strength and importance of a system analysis to (i) provide improved process based insight in the agricultural production system with more reliable predictions, (ii) to understand, quantify and optimize the technical sustainability of a product and (iii) to address more complex issues on sustainable production and future decisions.
Choose an application
For hundreds of years, farmers in the Central Highlands of Peru have been adapting classical agricultural technology to the local limitations imposed by soil characteristics, topography, water availability, climate and socio-economic structures. Through traditional knowledge, most farmers are perfectly able to control many subprocesses of their farming system. Still, they lack the scientific knowledge to optimise the overall production system. Inefficient use of production factors, poor yields and substantial environmental impacts are no exception. To investigate this problem, the KU Leuven started a Farming Systems Research project in cooperation with the UNALM, funded by VLIR-UOS from 2004 to 2020. The Mantaro Valley is one of the areas under investigation. Based on the data collected during the first years of the project, this work performs a profound analysis of the input-output relations and the technical sustainability of the potato production systems in the Mantaro Valley. Emphasis is put on the importance of adequate analysis methodologies to evaluate a farming system's performance and efficiency. The energetic efficiency, the contrast between applied and advised fertiliser doses, five environmental impact factors (calculated using Life Cycle Assessment) and six relative efficiencies (calculated using Data Envelopment Analysis) are computed for all the observations. In addition, the results of a local potential production experiment are analysed and yield predictions are made with a potato growth and development model based on local climate data. They help to uncover the amount of yield that is potentially realisable with good agricultural practices under the local conditions. This work focuses on nutrient management and on the investment and allocation of labour. The obtained insights and the computed performance and efficiency indicators are used to evaluate the different potato production systems in relation to each other and in relation to the local potentials. Consequently, essential qualitative optimisation suggestions concerning nutrient and labour management are developed. For a quantitative system-based optimisation program, including accurate fertilisation and activity schemes while considering both yield and environmental impact, further research has to be performed and the capacities of the different methodologies have to be extended and combined with each other to finally develop an integral assessment tool.
Listing 1 - 10 of 21 | << page >> |
Sort by
|