Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Choose an application
This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
Mathematics --- toegepaste wiskunde --- wiskunde
Choose an application
Spherical functions --- Approximation theory --- Earth sciences --- Mathematics --- -Spherical functions --- 517.518.8 --- Functions, Spherical --- Spherical harmonics --- Transcendental functions --- Spheroidal functions --- Geosciences --- Environmental sciences --- Physical sciences --- Theory of approximation --- Functional analysis --- Functions --- Polynomials --- Chebyshev systems --- Approximation of functions by polynomials and their generalizations --- Approximation theory. --- Spherical functions. --- Mathematics. --- 517.518.8 Approximation of functions by polynomials and their generalizations --- Earth sciences - Mathematics
Choose an application
This book presents, in a consistent and unified overview, results and developments in the field of today´s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.
Mathematics. --- Geophysics. --- Partial differential equations. --- Special functions. --- Information theory. --- Numerical analysis. --- Mathematics --- Special Functions. --- Partial Differential Equations. --- Numerical Analysis. --- Geophysics/Geodesy. --- Information and Communication, Circuits. --- Mathematics Education. --- Study and teaching. --- Functions, special. --- Differential equations, partial. --- Physical geography. --- Geography --- Partial differential equations --- Mathematical analysis --- Math --- Science --- Special functions --- Mathematics—Study and teaching . --- Communication theory --- Communication --- Cybernetics --- Geological physics --- Terrestrial physics --- Earth sciences --- Physics
Choose an application
Duringthelastdecades,geosciencesand-engineeringwerein?uencedbytwo essentialscenarios. First, thetechnologicalprogresshaschangedcompletely the observational and measurement techniques. Modern high speed c- puters and satellite-based techniques are entering more and more all (geo) disciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. (i) e?cient strategies of protection against threats of a changing Earth and (ii) the exceptional s- uation of getting terrestrial, airborne as well as spaceborne, data of better and better quality explain the strong need for new mathematical structures, tools, and methods. In consequence, mathematics concerned with geosci- ti?c problems, i.e., geomathematics, is becoming more and more important. Nowadays, geomathematics may be regarded as the key technology to build the bridge between real Earth processes and their scienti?c understanding. In fact, it is the intrinsic and indispensable means to handle geoscient- cally relevant data sets of high quality within high accuracy and to improve signi?cantly modeling capabilities in Earth system research.
Mathematics --- Geophysics --- toegepaste wiskunde --- geofysica
Choose an application
Duringthelastdecades,geosciencesand-engineeringwerein?uencedbytwo essentialscenarios. First, thetechnologicalprogresshaschangedcompletely the observational and measurement techniques. Modern high speed c- puters and satellite-based techniques are entering more and more all (geo) disciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. (i) e?cient strategies of protection against threats of a changing Earth and (ii) the exceptional s- uation of getting terrestrial, airborne as well as spaceborne, data of better and better quality explain the strong need for new mathematical structures, tools, and methods. In consequence, mathematics concerned with geosci- ti?c problems, i.e., geomathematics, is becoming more and more important. Nowadays, geomathematics may be regarded as the key technology to build the bridge between real Earth processes and their scienti?c understanding. In fact, it is the intrinsic and indispensable means to handle geoscient- cally relevant data sets of high quality within high accuracy and to improve signi?cantly modeling capabilities in Earth system research.
Mathematics --- Geophysics --- toegepaste wiskunde --- geofysica
Choose an application
This book presents, in a consistent and unified overview, results and developments in the field of today´s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.
Didactics of mathematics --- Algebraic geometry --- Partial differential equations --- Differential equations --- Numerical analysis --- Mathematics --- Geophysics --- Information systems --- Physical geography --- differentiaalvergelijkingen --- ICT (informatie- en communicatietechnieken) --- functies (wiskunde) --- didactiek --- informatiesystemen --- wiskunde --- fysische geografie --- geofysica --- numerieke analyse
Choose an application
Differential equations --- Numerical analysis --- Mathematics --- Geophysics --- Planning (firm) --- differentiaalvergelijkingen --- mathematische modellen --- wiskunde --- geofysica --- numerieke analyse
Choose an application
This monograph presents the geoscientific context arising in decorrelative geomagnetic exploration. First, an insight into the current state of research is given by reducing magnetometry to mathematically accessible, and thus calculable, decorrelated models. In this way, various questions and problems of magnetometry are made available to a broad scientific audience and the exploration industry. New stimuli are given, and innovative ways of modeling geologic strata by mollifier magnetometric techniques are shown. Potential data sets primarily of terrestrial origin constitute the main data basis in the book. For deep geology, the geomathematical decorrelation methods are designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Overall, this book provides pioneering and ground-breaking innovative mathematical knowledge as a transfer methodology from the "reality space" of magnetometric measurements into the "virtual space" of mathematical-numerical modeling structures and mollifier solutions with novel geological application areas. It pursues a double goal: On the one hand, it represents a geoscientific set of rules for today's geoengineering, interested in the application of innovative modelling and simulation techniques to promising data sets and structures occurring in geomagnetics. On the other hand, the book serves as a collection of current material in Applied Mathematics to offer alternative methodologies in the theory of inverse problems.
Differential equations --- Numerical analysis --- Mathematics --- Geophysics --- Planning (firm) --- differentiaalvergelijkingen --- mathematische modellen --- wiskunde --- geofysica --- numerieke analyse
Listing 1 - 9 of 9 |
Sort by
|