Listing 1 - 10 of 76 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Estimated dynamic stochastic equilibrium (DSGE) models are now widely used for empirical research in macroeconomics as well as for quantitative policy analysis and forecasting at central banks around the world. This paper reviews recent advances in the estimation and evaluation of DSGE models, discusses current challenges, and provides avenues for future research.
Choose an application
This paper develops a vector autoregression (VAR) for time series which are observed at mixed frequencies - quarterly and monthly. The model is cast in state-space form and estimated with Bayesian methods under a Minnesota-style prior. We show how to evaluate the marginal data density to implement a data-driven hyperparameter selection. Using a real-time data set, we evaluate forecasts from the mixed-frequency VAR and compare them to standard quarterly-frequency VAR and to forecasts from MIDAS regressions. We document the extent to which information that becomes available within the quarter improves the forecasts in real time.
Choose an application
The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t-1 particle values into time t values. In the widely-used bootstrap particle filter, this distribution is generated by the state-transition equation. While straightforward to implement, the practical performance is often poor. We develop a self-tuning particle filter in which the proposal distribution is constructed adaptively through a sequence of Monte Carlo steps. Intuitively, we start from a measurement error distribution with an inflated variance, and then gradually reduce the variance to its nominal level in a sequence of tempering steps. We show that the filter generates an unbiased and consistent approximation of the likelihood function. Holding the run time fixed, our filter is substantially more accurate in two DSGE model applications than the bootstrap particle filter.
Choose an application
Listing 1 - 10 of 76 | << page >> |
Sort by
|