Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability theory. The basic theory - measures, integrals, convergence theorems, Lp-spaces and multiple integrals - is explored in the first part of the book. The second part then uses the notion of martingales to develop the theory further, covering topics such as Jacobi's generalized transformation Theorem, the Radon-Nikodym theorem, Hardy-Littlewood maximal functions or general Fourier series. Undergraduate calculus and an introductory course on rigorous analysis are the only essential prerequisites, making this text suitable for both lecture courses and for self-study. Numerous illustrations and exercises are included and these are not merely drill problems but are there to consolidate what has already been learnt and to discover variants, sideways and extensions to the main material. Hints and solutions can be found on the author's website, which can be reached from www.cambridge.org/9780521615259.
Stochastic processes --- Measure theory --- Martingales (Mathematics) --- Measure theory. --- Integrals. --- Calculus, Integral --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Integrals, Generalized --- Measure algebras --- Rings (Algebra)
Choose an application
Die Wahrscheinlichkeitstheorie gehört zu den Kerndisziplinen der modernen Mathematikausbildung. Sie ist die Grundlage für alle Modelle, die "Risiko" und "Unsicherheit" einbeziehen. Dieses Lehrbuch gibt einen direkten, verlässlichen und modernen Zugang zu den wichtigsten Ergebnissen der mathematischen Wahrscheinlichkeitstheorie. Aufbauend auf dem Band "Maß & Integral" werden zunächst elementare Fragen Wahrscheinlichkeitsverteilungen, Zufallsvariable, Unabhängigkeit, bedingte Wahrscheinlichkeiten und charakteristische Funktionen - bis hin zu einfachen Grenzwertsätzen behandelt. Diese Themen werden dann um das Studium von Summen unabhängiger Zufallsvariablen - Gesetze der Großen Zahlen, Null-Eins-Gesetze, random walks, zentraler Grenzwertsatz von Lindeberg-Feller - ergänzt. Allgemeine bedingte Erwartungen, Anwendungen von charakteristischen Funktionen und eine Einführung in die Theorie unendlich teilbarer Verteilungen und der großen Abweichungen runden die Darstellung ab. In gleicher Ausstattung erscheint der Folgeband "Martingale & Prozesse". Lösungen zu den im Buch befindlichen Übungsaufgaben unter: http://www.motapa.de/stoch/index.shtml
Probabilities --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors' aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Brownian motion processes. --- Stochastic processes. --- Random processes --- Probabilities --- Wiener processes --- Brownian movements --- Fluctuations (Physics) --- Markov processes
Choose an application
Choose an application
Choose an application
Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors' aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Brownian motion processes. --- Stochastic processes. --- Random processes --- Probabilities --- Wiener processes --- Brownian movements --- Fluctuations (Physics) --- Markov processes --- Brownian Motion. --- Numerical Simulation. --- Stochastic Calculus. --- Stochastic Process.
Listing 1 - 10 of 17 | << page >> |
Sort by
|