Narrow your search

Library

AP (2)

KDG (2)

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (7)

digital (2)


Language

English (9)


Year
From To Submit

2023 (1)

2018 (2)

2016 (5)

2013 (1)

Listing 1 - 9 of 9
Sort by

Book
Theory of Besov Spaces
Author:
ISBN: 9811308365 9811308357 Year: 2018 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis. Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, Lp spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.


Digital
Theory of Besov Spaces
Author:
ISBN: 9789811308369 Year: 2018 Publisher: Singapore Springer Singapore, Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis. Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, Lp spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.


Book
Theory of Reproducing Kernels and Applications
Authors: ---
ISBN: 981100529X 9811005303 Year: 2016 Publisher: Springer Singapore

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Digital
Theory of Reproducing Kernels and Applications
Authors: ---
ISBN: 9789811005305 Year: 2016 Publisher: Singapore Springer Singapore, Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions. In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, and as well, a general integral transform theory are introduced. In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.


Book
Theory of reproducing kernels and applications
Authors: ---
Year: 2016 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions. In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, and as well, a general integral transform theory are introduced. In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.


Book
Theory of reproducing kernels and applications
Authors: ---
Year: 2016 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions. In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, and as well, a general integral transform theory are introduced. In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.


Book
Theory of reproducing kernels and applications
Authors: ---
Year: 2016 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions. In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, and as well, a general integral transform theory are introduced. In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.


Book
A new framework for generalized Besov-type and Triebel-Lizorkin-types spaces
Authors: --- --- --- ---
ISSN: 00123862 Year: 2013 Publisher: Warszawa Institute of Mathematics, Polish Academy of Sciences

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Potentials and Partial Differential Equations

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Listing 1 - 9 of 9
Sort by