Narrow your search

Library

KU Leuven (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

UGent (3)

AP (2)

More...

Resource type

book (4)

digital (4)


Language

English (8)


Year
From To Submit

2018 (2)

2014 (2)

2012 (4)

Listing 1 - 8 of 8
Sort by

Book
Progress in commutative algebra 1 : combinatorics and homology
Authors: ---
ISBN: 1280570326 9786613599926 3110250403 3110250349 Year: 2012 Publisher: Berlin : De Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is the first of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains combinatorial and homological surveys. The combinatorial papers document some of the increasing focus in commutative algebra recently on the interaction between algebra and combinatorics. Specifically, one can use combinatorial techniques to investigate resolutions and other algebraic structures as with the papers of Fløystad on Boij-Söderburg theory, of Geramita, Harbourne and Migliore, and of Cooper on Hilbert functions, of Clark on minimal poset resolutions and of Mermin on simplicial resolutions. One can also utilize algebraic invariants to understand combinatorial structures like graphs, hypergraphs, and simplicial complexes such as in the paper of Morey and Villarreal on edge ideals. Homological techniques have become indispensable tools for the study of noetherian rings. These ideas have yielded amazing levels of interaction with other fields like algebraic topology (via differential graded techniques as well as the foundations of homological algebra), analysis (via the study of D-modules), and combinatorics (as described in the previous paragraph). The homological articles the editors have included in this volume relate mostly to how homological techniques help us better understand rings and singularities both noetherian and non-noetherian such as in the papers by Roberts, Yao, Hummel and Leuschke.


Book
Connections between algebra, combinatorics, and geometry
Authors: ---
ISBN: 1493906267 1493906259 Year: 2014 Publisher: New York, NY : Springer New York : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection. .


Book
Closures, finiteness and factorization
Authors: ---
ISBN: 1280569565 9786613599162 311027860X 3110278596 Year: 2012 Publisher: Berlin : De Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure. Finiteness properties of rings and modules or the lack of them come up in all aspects of commutative algebra. However, in the study of non-noetherian rings it is much easier to find a ring having a finite number of prime ideals. The editors have included papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship of rings with finite Krull dimension and their finite extensions. Finiteness properties in commutative group rings are discussed in Glaz and Schwarz's paper. And Olberding's selection presents us with constructions that produce rings whose integral closure in their field of fractions is not finitely generated. The final three papers in this volume investigate factorization in a broad sense. The first paper by Celikbas and Eubanks-Turner discusses the partially ordered set of prime ideals of the projective line over the integers. The editors have also included a paper on zero divisor graphs by Coykendall, Sather-Wagstaff, Sheppardson and Spiroff. The final paper, by Chapman and Krause, concerns non-unique factorization.


Digital
Connections Between Algebra, Combinatorics, and Geometry
Authors: ---
ISBN: 9781493906260 Year: 2014 Publisher: New York, NY Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection. .


Book
Monomial Ideals and Their Decompositions
Authors: --- ---
ISBN: 3319968769 3319968742 9783319968742 Year: 2018 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This textbook on combinatorial commutative algebra focuses on properties of monomial ideals in polynomial rings and their connections with other areas of mathematics such as combinatorics, electrical engineering, topology, geometry, and homological algebra. Aimed toward advanced undergraduate students and graduate students who have taken a basic course in abstract algebra that includes polynomial rings and ideals, this book serves as a core text for a course in combinatorial commutative algebra or as preparation for more advanced courses in the area. The text contains over 600 exercises to provide readers with a hands-on experience working with the material; the exercises include computations of specific examples and proofs of general results. Readers will receive a firsthand introduction to the computer algebra system Macaulay2 with tutorials and exercises for most sections of the text, preparing them for significant computational work in the area. Connections to non-monomial areas of abstract algebra, electrical engineering, combinatorics and other areas of mathematics are provided which give the reader a sense of how these ideas reach into other areas. . .


Digital
Monomial Ideals and Their Decompositions
Authors: --- ---
ISBN: 9783319968766 Year: 2018 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This textbook on combinatorial commutative algebra focuses on properties of monomial ideals in polynomial rings and their connections with other areas of mathematics such as combinatorics, electrical engineering, topology, geometry, and homological algebra. Aimed toward advanced undergraduate students and graduate students who have taken a basic course in abstract algebra that includes polynomial rings and ideals, this book serves as a core text for a course in combinatorial commutative algebra or as preparation for more advanced courses in the area. The text contains over 600 exercises to provide readers with a hands-on experience working with the material; the exercises include computations of specific examples and proofs of general results. Readers will receive a firsthand introduction to the computer algebra system Macaulay2 with tutorials and exercises for most sections of the text, preparing them for significant computational work in the area. Connections to non-monomial areas of abstract algebra, electrical engineering, combinatorics and other areas of mathematics are provided which give the reader a sense of how these ideas reach into other areas. . .


Digital
Progress in Commutative Algebra
Authors: --- --- --- --- --- et al.
ISBN: 9783110250404 Year: 2012 Publisher: Berlin ; New York Walter de Gruyter

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is the first of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains combinatorial and homological surveys. The combinatorial papers document some of the increasing focus in commutative algebra recently on the interaction between algebra and combinatorics.

Keywords


Digital
Progress in Commutative Algebra
Authors: --- --- --- --- --- et al.
ISBN: 9783110278606 Year: 2012 Publisher: Berlin ; New York Walter de Gruyter

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and more.

Keywords

Listing 1 - 8 of 8
Sort by